
UNIVERSITY JEAN MONNET

Domain adaptation using Optimal
Transport: application to prostate

cancer mapping

Author:
Léo GAUTHERON

Supervisors:
Carole LARTIZIEN, CNRS Researcher

Ievgen REDKO, Associate Professor

A thesis submitted in partial fulfillment of the Machine Learning and
Data Mining master, promotion 2015-2017

Research internship from Jan 31st 2017 to July 28th 2017 in the

CREATIS LABORATORY (Villeurbanne, France)

Contents
1 Introduction 2

2 Medical context 3
2.1 Data acquisition . 4
2.2 Features description . 5

3 Domain adaptation for prostate cancer mapping 7
3.1 Semi-supervised domain adaptation 7
3.2 Unsupervised domain adaptation . 9

4 Experiments 11
4.1 Methodology . 11
4.2 Results . 15

5 Original contributions 21
5.1 Feature selection using optimal transport 21
5.2 Optimal transport with learned transport cost metric 25

6 Conclusion 27

Appendices 30

A Feature on voxel used 30

B Results feature selection dataset Office Caltech 32

1

1 Introduction
Computer aided diagnosis systems (CAD) have been developed in the recent years
to assist the medical experts in establishing their diagnosis. In the medical imaging
domain, such systems can provide the location and the aggressiveness of regions of
interest. This knowledge is often provided by a classification model learned with a
training database. The aim being that these CAD give relevant data to doctors by
detecting aggressive lesions (true positive). As data generated by the CAD are then
analyzed by an expert, CAD should avoid to detect normal regions (false positive) as it
will waste the time of the expert and potentially lead to diagnostic errors. Thus, a CAD
efficiency is judged based on true/false positive ratio.

The effectiveness of CAD depends heavily on its training database used to learn the
classification model. First, the database should contain a sufficient number of samples
in the different classes of the pathology. The constitution of such database is difficult
in medical imaging because it requires the medical experts to annotate a large amount
of images. Then, the CAD must be deployed to classify new images coming from the
same data distribution as the one from the training database. This last requirement is
violated when the CAD is used on images acquired with different systems and/or dif-
ferent protocols. These images will indeed have different noise and texture compared
to the training images. It is then probable that the use of the CAD will perform poorly
on the new images. Our main objective is thus to discover how to adapt a CAD de-
veloped with data coming from a certain imaging protocol when this CAD is to be
deployed on data coming from a different imaging protocol?

This problematic matches the one of the Domain Adaptation research field, a sub-
field of Transfer Learning that generalizes concepts from classic Machine Learning.
In Machine Learning we want to make computers learn automatically a model from
training samples such that this model is able to make predictions on new samples. For
example, if we want a model that is able to detect cancer lesions in MRI images, we
will learn a model from a large set of annotated images from one data distribution
among which there will be images with and without lesions. The annotations are the
information that was given by the expert of the domain, for example here to underline
the lesions. And given a new MRI image without annotation of the same data distri-
bution, the model might create a probability map indicating the suspicious regions. In
Transfer Learning, we want to use the knowledge obtained using Machine Learning
to solve a certain problem and be able to use again this knowledge to solve a similar
problem. For example, we might want to use our knowledge of detecting cancer lesions
in MRI to detect a different pathology such as epilepsy. The research field of Domain
Adaptation is related to the one of Transfer Learning. In Domain Adaptation, we also
have a classification model learned to deal with one problem. This model has been
learned on a set of training samples called source domain. And we want to solve the
same problem on another set of samples having a different data distribution: the target
domain. There exist several cases of Domain Adaptation depending on the presence or
absence of annotated data in the target domain. In semi-supervised domain adaptation,
we suppose that we have a few annotated samples in the target domain. Whereas in
unsupervised domain adaptation, we suppose that no labeled samples are available for
the target domain. In both cases, one main assumption in domain adaptation is that the
task is the same in the source and target domain.

In response of the presented problematic, we will first introduce in section 2 the
medical context and data to be used in a CAD aimed to detect cancerous lesions in
MRI images of prostates. After, we will study in section 3 how to adapt our CAD

2

in the context of learning with heterogeneous data. For this, we will review in sub-
section 3.1 previous work done in a similar context of fusing the images coming from
different protocols [1, 2] in the case of semi-supervised domain adaptation. We will
then compare these results with unsupervised domain adaptation algorithms in sub-
section 3.2, some of which are based on the optimal transportation theory [13, 3, 4]. We
will then present in section 5 original contributions based on the optimal transportation
theory. First, we will present a method to select a subset of common features across the
source and target domains in sub-section 5.1. Then we will present in sub-section 5.2
preliminary work for optimal transport aimed to automatically learn its transportation
cost metric. We will then conclude in section 6.

2 Medical context
Prostate cancer is one of the most usual cancer for men. In the U.S. in 2016, it was re-
ported the diagnosis of 180,890 new cases and the death of 26,120 men because of this
cancer [5]. In France in 2016, prostate cancer is one of the top three affecting men with
lung and colorectal cancers [6]. The current diagnostic techniques include rectal exam-

Figure 1: Left picture (source Cancer Research UK - Wikimedia) indicates the position
of the prostate compared to other organs of the male reproductive system. Right picture
(source www.cancer.ca) describes the different zones of the prostate. We are interested
only in the peripheral zone.

ination, PSA blood measures and biopsies. But these methods have a lack of precision
that may result in over/under treatment. Multi-parametric magnetic resonance imaging
(MRI) is a method allowing to localize precisely cancerous regions in the prostate. In
order to do this, radiologists have to analyze a large amount of MRI images on the dif-
ferent sequences acquired. This work is long and tedious, and the interpretation of the
MRI may differ from one radiologist to another. In the recent years, there have been
the development of CAD systems between hospitals and research laboratories with the
aim to help interpret these large amounts of images.

In our case, there were several CAD systems developed for prostate cancer [7, 8]
between the CREATIS research laboratory and the Edouard Herriot Hospital (Lyon,
France). We will now describe how the data used by these CAD are obtained and used.

3

Figure 2: Left, 1.5T scanner
(Symphony, Siemens Medical
Systems, Erlangen, Germany).
Right, example of slices pro-
duced for each sequence (bot-
tom T2, top left ADC, top right
DCE).

Figure 3: Left, 3T scanner (Dis-
covery MR750 General Electric
Medical Systems, USA). Right,
example of slices produced for
each sequence (bottom T2, top
left ADC, top right DCE).

2.1 Data acquisition
In the work presented in [7], a first database of MRI images was constructed. There
was 49 patients suffering from a prostate cancer that underwent an MR exam before
radical prostatectomy. This exam was performed on a 1.5 Tesla clinical MR scanner
(Symphony, Siemens Medical Systems, Erlangen, Germany). A total of three MR
sequences were acquired: T2 (resolution 256× 256), DWI (resolution 128× 88) and
DCE (resolution 448× 512). The last sequence DCE was acquired at several times
after having injected a contrast agent to the patient. The DCE sequence presenting the
highest agent concentration levels was kept. The DWI and DCE sequences were then
rescaled to the resolution of the T2 sequence. Each of the three sequences is composed
of 24 slices having a thickness of 3mm. At the end, we obtain one 3D map of the
prostate with dimensions 256× 256× 24 for each of the three sequences. Later, the
hospital performing these exams obtained a new scanner 3 Tesla (Discovery MR750
General Electric Medical Systems, USA) offering a better resolution. The MRI exams
with this new scanner produce images of resolution: T2 512× 512, DWI 256× 256
and DCE 256×256. Apart from the resolutions, the acquisition protocol for this new
scanner is the same. With this new 3T scanner, we obtain one 3D map of the prostate
of dimensions 512×512×24 for each of the three sequences. We dispose of the data
of 41 patients that underwent the exam on this 3T scanner.

To create a CAD, not only a set of samples is needed, but also the annotations of
these samples. In our case, the prostate and its cancerous lesions were outlined in the
MRI images by the radiologists using OsiriX open-source image viewing workstation
(Geneva, Switzerland). This work is time consuming because the radiologists have to
outline the lesions in each of the 24 slices of the 3 sequences. After the MRI exam, the
patients underwent a radical prostatectomy with its results analyzed by histopatholo-
gists. These results first allowed to measure the aggressiveness of the prostate cancer
lesions in term of Gleason score. It then allowed to update the outlined regions in the
MRI images.

The construction of a CAD depends on a classification model learned on a training
set of annotated samples. As in [8], we consider each individual voxel as one sample:
we suppose that the three sequences acquired T2, ADC and DCE present different
views of the same 3D map of the prostate. For the 1.5T scanner, the 3D maps obtained
for the exam of one patient are of resolution 256× 256× 24. Thus we would have

4

Figure 4: Prostate MRI presenting cancer lesions (source [7]). (a) T2 sequence where
cancer lesions (A and B) are outlined along with a suspicious region (b1), (b) and (c)
the corresponding DCE and ADC sequences, (d) corresponding slice obtained after
radical prostatectomy and analyzed by histopathologists.

1,572,864 samples (also referred as voxels) per patient. The radiologists have outlined
the peripheral region of the prostate in the slices from the 24 slices where they were
visible. Here, we use only the voxels belonging to these outlined regions. Inside the
outlined regions of the prostate, the cancerous lesions were also outlined. Each voxel is
assigned the class label corresponding to the region on which it belongs. The number
of voxels available in each class for the images coming from both scanners is shown
in table 1. In this work, we will focus on binary classification models. Thus, we will
consider that voxels having a Gleason ≥ 7 are cancer, and the others are non cancer.

Table 1: Repartition of voxels belonging to the peripheral zone of the prostate among
the different classes of cancer aggressiveness (higher Gleason score indicates more
aggressive lesions). Voxels from 1.5T MRI come from 49 patients. Voxels from 3T
MRI come from 41 patients. Later, we consider each individual voxel as a training
sample having a binary label: Cancer⇐⇒ +1 (Gleason ≥ 7) or Non Cancer⇐⇒ -1.

Class #voxels 1.5T % #Voxels 3T %
Not Cancer 323,551 77% 786,964 80%
Suspect 31,924 8% 48,604 5%
Gleason 6 7,747 2% 10,988 1%
Gleason 7 33,507 8% 97,099 10%
Gleason 8 15,407 4% 12,372 1%
Gleason 9 7,212 2% 31,369 3%
Total 419,348 987,396

2.2 Features description
To be able to learn a classification model for our CAD, we need our annotated samples
to be described in a way allowing us to correctly discriminate them with regard to our
task: to determine if a voxel is cancer or non cancer. After the MR exams, the scanners
provide us with Dicom files containing the gray intensity of each voxel. From these
intensities, we then extract a set of 115 features (full list in appendix A). Even though
the feature extraction is out of scope of this work, we refer the interested reader to [9]
to understand how our features were extracted.

The 115 features extracted were designed for MR images having a resolution of
256× 256 (scanner 1.5T). Because of this, some of them present large differences

5

between 1.5T data and 3T data. Some features on 3T data give always the same value,
as can be seen in figure 5. Others were even doubloons. Therefore, we removed a set
of features (full list in appendix A) from our initial set of 115 to reduce it to 95 features
used. For the rest of this work, each voxel is then described by a set of 95 features.

Figure 5: Some features designed for the 1.5T images do not work well for 3T images
data because they give always the same value. All these features are removed.

Because of differences in the acquisition system between 1.5T and 3T data, some
of these features are more or less different across the two domains, as can be seen in
figure 6.

Figure 6: Example of features where the distributions are similar between the two
domains 1.5T and 3T (first row) and having a shift (second row).

This observed shift between our two domains 1.5T and 3T motivates this work. In
previous work on this subject, a couple of efficient CAD systems for the prostate cancer
mapping were proposed and built on data that we are using. Some were trained on the
1.5T data and deployed for the 1.5T data [7, 8]. A more recent CAD was trained on the
concatenation of the 1.5T and 3T data, and deployed for the 3T data [2]. Our aim is
somewhat different and consists in creating a CAD trained on the 1.5T data alone, and
to be deployed on the 3T data. We now propose solutions to this problem based on the
domain adaptation theory.

6

3 Domain adaptation for prostate cancer mapping
In unsupervised domain adaptation, it is often assumed in the literature that both source
and target samples have no label available to perform the adaptation. Here we relax
this assumption by supposing that we dispose of the labels of all the available source
samples and that the supervision of the problem depends only on the availability of
labels in the target domain. Thus, in unsupervised domain adaptation, we have access
to labeled source samples SSS = {xxxS

i ∈ RF}n
i=1 with labels {yS

i }n
i=1 and unlabeled target

samples TTT = {xxxT
i ∈ RF}m

i=1. This scenario can be also extended to semi-supervised
setting where we suppose that we know the labels of a subset TTT ccc of the target samples:
{yT

i }i∈TTT ccc . In both cases, the aim is to predict the unknown target labels. Unlike the
classical machine learning setting, we suppose here that the marginal distributions of SSS
and TTT are different. Because of this, using a classification model trained on SSS doesn’t
guarantee to obtain good performances on TTT if the divergence between SSS and TTT is not
minimized. We can then consider to adapt SSS to TTT . This adaptation method should allow
us to learn a model from SSS such that it gives the best performances possible on TTT .

In the literature, we distinguish three kinds of domain adaptation: (1) the reweight-
ing methods that weight the source samples such that they become the closest from
the target samples; (2) the methods aiming to find or build a shared representation
space across the two domains; (3) the iterative methods that adjust iteratively the model
learned on the source samples to the target samples.

3.1 Semi-supervised domain adaptation
We now present in this sub-section the different adaptations methods that were used in
a previous work [2] on which we are basing our work. All these methods suppose that
we dispose of annotations for some target samples TTT ccc.

Source Scaling (SS SC): A reweighting method first described in [1] where the
source samples are rescaled linearly to the target ones. Suppose that we have only two
possible annotations: +1 (positive) and -1 (negative). First, we split the set of source
samples SSS in the set of positive samples SSSp and negative samples SSSn. We similarly split
TTT ccc in TTT p

ccc and TTT n
ccc. We then compute the vector of means for each feature for these 4 set:

µ(SSSp), µ(SSSn), µ(TTT p
ccc) and µ(TTT n

ccc). Each source positive/negative sample is then rescaled
by a ratio of the mean between target and source:

SSSp
aaa = SSSp× µ(TTT p

ccc)

µ(SSSp)
and SSSn

aaa = SSSn× µ(TTT n
ccc)

µ(SSSn)
and SSSaaa = SSSp

aaa ∪SSSn
aaa (1)

We can then use SSSaaa alone or SSSaaa ∪TTT ccc to learn a classifier to be deployed on the target
distribution TTT .

Enhanced Source Scaling (SS ESC): Method described in [2] where, like in Source
Scaling, we divide SSS in SSSp and SSSn and TTT ccc in TTT p

ccc and TTT n
ccc. First we compute the sub-

spaces associated the these 4 sets. They are noted X p
S , Xn

S , X p
T and Xn

T . One subspace of
a matrix of size n× f is a matrix f × f where the ith column is the eigen vector having
the ith highest variance. The aim here is to find the matrix A such that we minimize the
following equation

min
A
||A||2F + ||X p

S A−X p
T ||

2
F + ||Xn

S A−Xn
T ||2F (2)

7

The author find that there exist a closed form solution for A defined by

A = (−X p′
S P+X p′

S X p
S −Xn′

S N +Xn′
S Xn

S)× (I +X p′
S X p

S +Xn′
S Xn

S)
−1 (3)

with P = X p
T −X p

S and N = Xn
T −Xn

S . After having computed A, all source samples are
projected in the source subspaces aligned with A:

SSSp
aaa = SSSpX p

S A and SSSn
aaa = SSSnXn

S A and SSSaaa = SSSp
aaa ∪SSSn

aaa (4)

Similarly, we project the target samples in the source subspaces (not the target sub-
spaces) to obtain TTT ca. We can then use SSSaaa alone or SSSaaa∪TTT ca to learn an SVM classifier
to be deployed on the target distribution TTT . Given a test sample x∈ T , their is a specific
way for this method to determine its label. x is projected in X p

S A to obtain xap and in
Xn

S A to obtain xan. The SVM classifier is then used to compute the distance of the two
points to the learned hyperplane. This is a signed distance with a positive distance indi-
cating a positive label, and a negative distance indicating a negative label. The signed
distance of the point x to the hyperplane is then assigned to the weighted sum of the
two distances. From this distance is determined the label of x.

Metric Learning (SS ML): This method described in [2] is based on the Maha-
lanobis distance

dM(x,x′) =
√
(x− x′)M(x− x′) (5)

where the aim is to learn the matrix M, here of size m×m with m = |SSS|+ |TTT ccc| (note
that if M is the identity matrix, we obtain the traditional euclidean distance). Here we
want to learn a matrix L of size p×m with p� m and L′L = M. If we replace M by
L′L in the Mahalanobis distance, we obtain

dL(x,x′) =
√
(Lx−Lx′)(Lx−Lx′) (6)

which corresponds to the euclidean distance of the points in the projected space defined
by L. The computation of L takes into account 4 constraints:

• For the set Sim of pairs of samples with same labels (pooled from source and tar-
get), we want to minimize the sum of their pairwise distances: S=∑(xi,x j)∈Sim(xi−
x j)(xi− x j)

′ multiplied by a parameter to tune γs.

• For the set Di f of pairs of samples with different labels (pooled from source
and target), we want to maximize the sum of their pairwise distances: D =

∑(xi,x j)∈Di f (xi− x j)(xi− x j)
′ multiplied by a parameter to tune γd .

• A regularization term B using the K nearest neighbors of the samples. This
is to penalize metrics changing completely the shape of the data. K is another
parameter to tune. B= (SSS∪TTT ccc)

′(diag(sum(W))−W)(SSS∪TTT ccc) with W the matrix
filled with 0 and storing at (i, j) a value of 1 if sample j (from SSS∪TTT ccc) is among
the K nearest neighbors of sample i, or i among the K nearest of j (symmetric
matrix).

• A dimension reduction by computing the subspace matrix V composed of the d
highest eigen vectors of the matrix SSS∪TTT ccc. d is thus another parameter to tune.

Consequently, γs, γd , K and d are the hyper-parameters that should be tuned. At the
end, L can be calculated using a closed form solution depending on the 4 constraints
presented:

L = 2V (B+B′+ γs(S+S′)− γd(D+D′)+2I)−1 (7)

8

Finally, the source and target samples are projected in the subspace defined by L

SSSaaa = SSSL and TTT ca = TTT cccL and TTT aaa = TTT L (8)

We can then use SSSaaa alone or SSSaaa ∪TTT ca to learn a classifier to be deployed on TTT aaa. An
important drawback of this method consists in a high number of parameters to tune.

3.2 Unsupervised domain adaptation
We will now present the unsupervised domain adaptation methods considered in this
work. Here, we suppose that we have no label information in the target domain.

Source Scaling (US SC): This method proposed by [1] for the semi-supervised
setting is adapted to become unsupervised. We note µ(SSS), µ(TTT), σ(SSS) and σ(TTT) the
vectors (for each feature) of means and standard deviations of source and target sam-
ples. Then the source adapted data are given by

SSSaaa =
SSS−µ(SSS)

σ(SSS)
×σ(TTT)+µ(TTT) (9)

We can then use SSSaaa to learn a classifier to be deployed on TTT . The advantage of this
method is its simplicity and linear complexity in the number of samples and features,
but it may fail to capture a non linear transformation between source and target domain.

Subspace Alignment (US SA): This unsupervised adaptation method [12] aims
to project the source and target samples in two subspaces spanned by their principal
components so that the divergence between the two domains is minimized. First we
choose a number of dimensions d to compute the subspaces. These subspaces are for
source Xs ∈ RF×d and for target Xt ∈ RF×d . They are composed of the d highest eigen
vectors having the highest variance. Xs is then aligned to Xt with the matrix M that
minimizes the following objective function:

F(M) = ||XsM−Xt ||2F (10)

which admit this closed form solution:

M = X ′sXt (11)

The source and target samples are then projected in their respective subspaces:

SSSaaa = SSSXsM and TTT aaa = TTT Xt (12)

We can then use SSSaaa to learn a classifier to be deployed on TTT aaa.
Optimal Transport: The theory of optimal transport has been introduced by Gas-

pard Monge in the 18th century and was recently revisited by Cédric Villani [13]. This
theory gives a mathematically founded tool to align arbitrary probabilistic distributions
in an optimal way.

In the discrete case, optimal transport aims to find a coupling matrix γ of two dis-
tributions defined as a joint distribution on SSS×TTT with empirical marginals µ̂S and µ̂T
such that for all x ∈ SSS,y ∈ TTT , we minimize the transport cost from µ̂S to µ̂T with regard
to a transportation cost function c : SSS×TTT → R+, i.e.:

γ0 = argmin
γ∈Π(µ̂S,µ̂T)

〈γ,C〉F (13)

9

where 〈., .〉F is Frobenius matrix product and Ci j = c(xS
i ,x

T
j). The constraint Π(µ̂S, µ̂T)=

{γ ∈ RNS×NT
+ |γ111 = µ̂S,γ

T 111 = µ̂T} means that, by summing in γ the values in one row
for each row, we obtain back the vector µ̂S. Similarly by summing the values in one
column for each column, we obtain back the vector µ̂T . The original formulation of
optimal transport (abbreviated US OT) is a Linear Programing problem that do not
scale well because of its computational complexity. This issue has been solved by [3]
who proposed to add to the equation 13 a regularization on the entropy of γ:

γ0 = argmin
γ∈Π(µ̂S,µ̂T)

〈γ,C〉F −
1
λ

E(γ) (14)

with E(γ) = −∑i j γi j logγi j the entropy regularization on γ. This regularized optimal
transport (abbreviated US OT2) authorize the source samples to be transported more or
less uniformly with regard to a regularization parameter λ to tune. This also allows this
variant of the optimal transport to be optimized efficiently with the Sinkhorn-Knopp
algorithm [16].

The use of optimal transport for domain adaptation has been studied for the first
time in [4]. In this paper, the transport cost matrix C is defined as the pairwise squared
euclidean distance between source and target samples (xS,xT) ∈ SSS×TTT . The empirical
marginals µ̂S and µ̂T are taken as uniform distributions summing to one, meaning that
each source/target sample has the same weight. In this work, the authors present a new
variant of optimal transport (abbreviated US OT3) based on equation 14 by adding a
class regularization `0.5`1:

γ0 = argmin
γ∈Π(µ̂S,µ̂T)

〈γ,C〉F −
1
λ

E(γ)+ηΩ(γ) (15)

where Ω(γ) = ∑ j ∑L ‖γ(IL , j)‖0.5
1 is the class regularization that prevent more or less

(based on parameter η to tune) the source samples having a different label to be trans-
ported to the same target sample. IL represents the list of sample indexes in SSS with
label L , and j goes through the sample indexes in TTT .

After having found the optimal coupling matrix γ0 with one of the three variants
131415, the authors of [4] propose to transport the source samples on the target ones
by solving this equation for each source sample:

x̂S
i = argmin

x∈R
∑

j
γo(i, j)c(x,xT

j) (16)

After that, they obtain that the solution of the equation 16 with the squared euclidean
distance can be computed directly for all source samples at once. This is done with the
following equation:

SSSaaa = diag((γo111)−1)γoTTT (17)

Note that, when the marginals µ̂S and µ̂T are uniform (in practice this is always the case
for us), the equation 17 is simplified to

SSSaaa = Nsγ0TTT (18)

With this computation, each source samples xS is represented as the weighted barycen-
ter of the target samples with which it has the highest values in γ0.

We propose a toy example in figure 7 to compare the different variants of optimal
transport that are studied. We see that the classical optimal transport will associates

10

only one target sample to each source sample. Using the variant with the regularization
on the entropy, each source sample is associated to its closest target samples. By adding
the class regularization, we prevent to make a coupling between samples of different
classes with the same target sample. However, this do not prevent to associate a source
sample for one class to a target sample of another class (because this would be a semi-
supervised method requiring labels from the target domain in addition to labels in the
source domain).

Figure 7: Comparison of the 3 variants of optimal transport studied. On the left, orig-
inal optimal transport, in the middle the variation with regularization on entropy [3]
(λ = 1), on the right the version with class regularization [4] (λ = 1 and η = 1). First
row shows γ0 with highest coupling values seen as darkest blue. Second row shows the
source and target points composed of 3 different classes in 3 different colors (generated
randomly around (0,1),(0,2),(0,3),(2,1),(2,2),(2,3)). The coupling between source and
target points are shown as segments with strongest color indicating higher coupling
values.

4 Experiments
After having described our medical data in section 2, and after having presented the
different adaptation methods considered in sub-sections 3.1 and 3.2, we now present
how these methods are used on our medical data, and how well they perform.

4.1 Methodology
Samples selection: As shown in table 1, our source SSS and target TTT domains are com-
posed of nearly 400,000 and 1,000,000 samples. Some of our adaptation methods
require to compute pairwise matrices between SSS and TTT . That would require to store
4×105×1×106 = 4×1011 float numbers (4 bytes) in memory. This gives 1.6×1012

bytes corresponding to around 1490GB of memory! We executed our experiments in
a computer equipped with 16GB of memory, thus we couldn’t store these matrices in

11

our memory. We approached this problem by selecting much smaller subsets of voxels
of sizes 1500 for SSS and TTT .

For the source domain SSS, we suppose that we know the label of each sample (among
the 6 classes which are: Not Cancer, Suspect, Gleason 6, Gleason 7, Gleason 8 and
Gleason 9). We choose to generate a subset of size 1500 by balancing the samples
of the different classes: we selected randomly 500 samples of the majority class Not
Cancer, and then 200 samples for the 5 other classes. This random sample selection for
one class is realized uniformly from the patients presenting sample of this class among
our 49 source patients. These 1500 voxels are considered as our source domain SSSccc.

For the target domain TTT , we consider three subsets. Two noted TTT 333 and TTT ccc where
we know the labels of the samples (for semi-supervised and supervised learning) and
one noted TTT uuu where we don’t know them (for unsupervised learning). For TTT 333, we se-
lected 3 of the 41 target patients that present samples of the 6 classes. We then selected
among these 3 patients the same number of voxels in each class in the same way as
for our subset SSSccc. The subset TTT ccc is generated similarly as TTT 333 but by taking the 1500
voxels from all the 41 target patients (subset used to learn a baseline method on target).
For TTT uuu, we used an original sample selection approach based on the algorithm US OT
presented in sub-section 3.2. We applied the algorithm US OT between the 1500 sam-
ples of SSSccc and 50,000 randomly sampled voxels uniformly among the 41 target patients
noted TTT 50k. At the end of the computation, we obtain the optimal coupling matrix γ

of dimensions 1500×50,000. For each source sample in SSSccc, we then select the target
sample with which the value in the coupling matrix is maximized:

TTT uuu = {x j ∈ TTT 50k| j = argmaxγi j, i ∈ [0,1500[} (19)

We then obtain TTT uuu containing 1500 voxels with a sampling close to the one performed
on SSSccc but without using any label information from the target domain.

Measure of performance used: During the development of a CAD system, we
need to be able to evaluate it to see how well it performs. In the medical domain, we
often evaluate such systems with the Area Under the (Receiver Operating Characteris-
tic) Curve (abbreviated AUC). To compute the AUC, we need our classification model
to return a confidence score of a given instance to belong to a given class. Here we use
probabilities (between 0 and 1) with a probability close to 1 indicating a high confi-
dence to be a cancer voxel. The computation of the AUC is described in figure 8. The
AUC obtained is between 0 and 1, with higher AUC indicating better model. We also
consider two other measures of performance based on the probability scores assigned
to the voxels. These measures are the average probability to be a cancer voxel assigned
to the cancer voxels (PC) and non cancer voxels (PNC). Both PC and PNC are between
0 and 1 as they are average of probabilities. A model can be seen as efficient with
regard to these two measures if there is a large gap between PC and PNC: we want
our model to give a large (respectively small) probability of being cancer to the cancer
(respectively non cancer) voxels.

12

Figure 8: Graphical representation of how is computed the AUC. The classification
model (Linear SVM) learned on our training voxels having annotation Cancer (+1) and
non cancer (-1) assign to each testing voxel its probability to be cancer (using Platt [17]
scaling). We define a set of 100 evenly spaced thresholds between 0 and 1. For one
threshold t, we assign the label cancer (+1) to the testing voxels with a probability ≥ t
and non cancer (-1) to the others testing voxels. We compute the True Positive Rate
and False Positive Rate with the assigned labels. By repeating this for each threshold
considered, we can plot the TPR in function of FPR, which gives the ROC curve.
Finally we compute the area under this curve.

Leave One Patient Out: We adopt the LOPO strategy to evaluate our model. This
technique is used when there is a small number of patients available. Suppose P is our
set of patients. For each p ∈ P, we learn a model m on the voxels belonging to the
patients in P\{p}. Then we use m to compute the confidence scores S of the voxels
belonging to patient p. After, we compute the AUC for p with S and the real labels of
p. Finally, we return the mean of the AUC computed for each patient.

The AUC can be computed only on patients presenting labels from the two classes:
Cancer (+1) and Not Cancer (-1), otherwise there would be a division by 0 in the com-
putation of the TPR or FPR. We are interested only in detecting cancer in the peripheral
zone of the prostate, but some patients had a cancer in another region. Because of this,

13

those latter patients do not present cancer voxels in our data. Thus, we compute the
AUC only for the patients having cancer voxels and the mean AUC returned is only
over their AUC. For the source domain, this represents 36 patients among the 49 ini-
tial. For the target domain, this represents 32 patients among the 41 initial. But even if
some patients are not used to evaluate the models, we still use some of their voxels in
our training subsets, allowing us to have a wider variety of samples, which is important
in machine learning.

Model learning and evaluation: For all experiments, we make use of a python im-
plementation of linear SVM (sklearn.svm.LinearSVC) to learn our models. We make
use of the signed distances of the samples to the hyperplane learned by SVM. These
distances are rescaled in the interval [0,1] using the Platt scaling [17] to give us the
probabilities of the voxels to be cancer voxels. For this scaling, we first learn our SVM
model m. The scaling consists in fitting a logistic regression on the signed distances ob-
tained on the training data using m, before using it to predict the probabilities on the test
adapted data. The parameter C of SVM and the different parameters of the adaptation
algorithms are tuned differently in the semi-supervised and the unsupervised setting.

For semi-supervised domain adaptation, we perform a grid search on the space of
set of parameters. For each set of parameters, we use them to adapt SSSccc to TTT 333, giving
SSSca and TTT 3a. We then keep the model m learned on train = SSSca ∪TTT 3a that maximizes
the mean AUC using the LOPO strategy on TTT 3a. The model m is used to classify a
test set composed of all the voxels v belonging to the target patients having cancer and
non cancer voxels without the 3 patients P3 selected to build TTT 333 (this represents 29
patients): test = TTT aaa\{v ∈ TTT aaa|patient(v) ∈ P3}. m is used to evaluate each test patient
individually to obtain one AUC per patient, and we compute the mean AUC at the end.
This last AUC is the performance measure considered in the results. We will compare
them to a baseline method without adaptation noted Semi-supervised No Adaptation
(SS NA).

For unsupervised domain adaptation, we also perform a grid search to find the
best set of parameters. For each set of parameters, we use them to adapt SSSccc to TTT uuu,
giving SSSca. We then keep the model m learned on train = SSSca that maximizes the
mean AUC on train using the LOPO strategy. Even if we can test the model m on all
the test data TTT aaa, we prefer not to do it so that we can compare semi-supervised and
unsupervised methods. Thus here also m is used on test = TTT aaa\{v ∈ TTT aaa|patient(v) ∈
P3} to compute for each test patient its AUC, and to compute the mean AUC at the
end. This last AUC is the performance measure presented in the results. These results
will also be compared to a baseline method without adaptation noted Unsupervised
No Adaptation (US NA).

The different semi-supervised and unsupervised method will be compared to an-
other baseline where we learn directly from the target data and deploy on the target
data. For this we use our subset TTT ccc where we sampled 1500 voxels according to their
class labels from the 41 patients. We adopt a similar LOPO strategy on the set of the
29 target patients on which we evaluated the two previous methods. For each patient
p of them, we learn a model m on train = TTT ccc\{v ∈ TTT ccc|patient(v) = p}. And we use
m to classify all the voxels of this patient TTT p = {v ∈ TTT |patient(v) = p} to compute
the AUC. We then return the mean AUC over the 29 patients. This baseline method is
referred as Supervised No Adaptation (S NA).

14

4.2 Results
Semi-supervised comparison: First, we compare the different semi-supervised meth-
ods described in 3.1 between each other. As explained in sub-section 4.1, the classi-
fication model SVM is learned on train = SSSca∪TTT 3a. The four methods compared are
SS NA, SS SC, SS ESC and SS ML. We will in addition consider these 4 methods by
learning the model only on the source adapted data (train = SSSca): SS S NA, SS S SC,
SS S ESC and SS S ML. Finally, we also consider these 4 methods learned only on
the target adapted data (train = TTT 3a): SS T NA, SS T SC, SS T ESC and SS T ML.

Table 2: Comparison of the 4 semi-supervised adaptation algorithms considered on
our task to adapt our source 1.5T data to our 3T target data. After applying these 4
algorithms to adapt source to target, we train a linear SVM on source union target
(left), on source only (middle) and on target only (right). And we report the resulting
mean (over the patients) AUC, PC and PNC: Area Under (ROC) Curve, Probability (of
belonging to the cancer class) given to Cancer voxels, and Probability given to Non
Cancer voxels are the measure of performance given.

Method AUC PC PNC Method AUC PC PNC Method AUC PC PNC
SS NA 0.816 0.637 0.395 SS S NA 0.505 0.000 0.000 SS T NA 0.812 0.657 0.419
SS SC 0.800 0.677 0.350 SS S SC 0.660 0.623 0.354 SS T SC 0.802 0.667 0.395
SS ESC 0.808 0.641 0.428 SS S ESC 0.578 0.409 0.406 SS T ESC 0.647 0.537 0.529
SS ML 0.798 0.634 0.422 SS S ML 0.568 0.418 0.379 SS T ML 0.771 0.625 0.446

15

Figure 9: Figure corresponding to results presented in table 2. The first image shows
the original slice of a patient having two cancerous lesions indicating in red in the
ground truth image. Each other figure show the probability assigned to each voxel by
the different semi-supervised adaptation methods.

The results for this experiment are shown in table 2 and figure 9. When the model
is learned on the source adapted data alone we obtain an AUC of 0.505, 0.660, 0.578
and 0.568 for the 4 algorithms. But when the model is learned on the concatenation of
source and target, the performances are significantly better with an AUC of respectively
0.816, 0.800, 0.808 and 0.798. It seems that using these semi-supervised methods to
adapt the source data is not a good idea, unless we plan to use the source adapted
data with the target data. The use of only the target data gives as expected higher re-
sults since they come from the same data distribution as the one where we evaluate
the model. For the Enhanced Source Scaling method, the use of one of the two do-
mains alone produces uniform cancer probability maps, preventing any interpretation
of them by a specialist. This is the same when we learn only on the source data without
adaptation. Doing this do not work at all since all the voxels are assigned a probability
of 0 to be cancer. This prove the need to use an adaptation algorithm. Globally, the
classification model give better performances when learned on the concatenation of the

16

source adapted data and target adapted data than on one of the two alone.
Unsupervised comparison: Now, we compare the different unsupervised methods

described in 3.2 between each other.

Table 3: Comparison of the 6 unsupervised adaptation algorithms considered on our
task to adapt our source 1.5T data to our 3T target data. After applying these 6 algo-
rithms to adapt source to target, we train a linear SVM on the source data only, and we
report the resulting mean (over the patients) AUC, PC and PNC.

Method AUC PC PNC
US NA 0.505 0.000 0.000
US SA 0.817 0.598 0.339
US SC 0.848 0.532 0.253
US OT 0.808 0.525 0.324
US OT2 0.656 0.620 0.363
US OT3 0.768 0.615 0.229

Figure 10: Figure corresponding to results presented in table 3. These results are
evaluated on the same slice of the patient considered in figure 9.

As before, we see that by learning a model on the source data without adaptation,
the results on the target data are always the same: all the voxels are assigned a cancer
probability of 0. There is a clear shift between source and target data because the
target data is so far from the decision boundary learned by the linear SVM that all
target samples are always on the same side of the hyperplane, here in the negative
side. But even if there is a clear shift, it seems that there is a rather easy way of
getting rid of it: the Unsupervised Source Scaling method is in fact the method that
gives the best mean AUC of 0.848 while also being the simplest algorithm in term of
implementation and computation time. We see an interesting behavior for the algorithm
OT3. It allows to make decisions with high probabilities: for Source Scaling, the PC
and PNC those are 0.532 and 0.253 while they are of 0.615 and 0.229 for OT3. This
gives gaps of respectively 0.279 and 0.386 between the probabilities given to the two
classes. In the medical context, it may be useful to have a large separability between

17

the different classes to help the expert to make his diagnostic faster by immediately
detecting the regions of interest. As a side note, we had a paper accepted in the national
conference GRETSI presenting the unsupervised domain adaptation methods and their
performances.

Semi-supervised Versus Unsupervised: We now aggregate the results presented
individually for semi-supervised and unsupervised methods. We also compare them
with the fully supervised baseline method S NA on the target data.

Table 4: Global comparison of the semi-supervised and unsupervised adaptation algo-
rithms considered on our task to adapt our source 1.5T data to our 3T target data.

Method AUC PC PNC
S NA 0.844 0.643 0.394
SS NA 0.816 0.637 0.395
SS SC 0.800 0.677 0.350
SS ESC 0.808 0.641 0.428
SS ML 0.798 0.634 0.422
US SA 0.817 0.598 0.339
US SC 0.848 0.532 0.253
US OT 0.808 0.525 0.324
US OT2 0.656 0.620 0.363
US OT3 0.768 0.615 0.229

Figure 11: Figure corresponding to results presented in table 4. This figure aggregates
the best results of the figures 9 and 10.

18

The results are shown in table 4 and figure 4. With an AUC of 0.844, the fully
supervised baseline method is the second best after the method Unsupervised Source
Scaling having an AUC of 0.848. This adaptation method successfully works on this
adaptation task because we achieve better performances on the target domain by learn-
ing from a different data distribution. On the side of semi-supervised algorithm, the
method that performs the best is Enhanced Source Scaling with an AUC of 0.808. This
is as good or less good than three Unsupervised methods which are Subspace Align-
ment, Optimal Transport and Source Scaling. Contrarily to what could be expected, the
use of labels in the target domain do not improve performances compared to the set-
ting where we only use labels in the source domain. The concatenation of source and
adapted data might still be sub-optimal if source adapted and target adapted data are
still rather different. Another better way of using the target labels in this task could be
to cross-validate the parameters of an Unsupervised algorithm such that it maximizes
the AUC on the target data available.

Increasing number of voxels: In the previous experiments, we have used rather
small training subsets: 1500 source voxels taken from the database of 419,348 voxels.
And 1500 target voxels taken from the database of 987,396 voxels. Here, we propose to
evaluate the performances and computation time of the unsupervised adaptation meth-
ods by changing the size of these subsets. The source subset will be generated like
before 4.1 by taking 5

15 of the voxels in the majority class, and 2
15 of the voxels for the

5 other classes. However, the target unsupervised subset TTT uuu (of the same size of the
source one), will be generated differently. As for large number of voxels in the source
subset, the US OT algorithm used to generate TTT uuu would ran out of memory, due to its
quadratic space complexity. TTT uuu is generated directly randomly uniformly among the
41 target patients.

The implementation of the unsupervised algorithms presented above are in Python.
Optimal transport based algorithms are implemented in a library available on Github
1. The basic implementations of the algorithms OT2 and OT3 are with traditional
python code running on the processor (CPU) of the computer. We developed with a
python library 2 an efficient implementation of these two algorithms that runs on the
graphics processing unit (GPU) of the computer (in our case the GPU is an NVIDIA
Titan X). We made available these GPU versions of the algorithms for everyone in the
Github repository of the Optimal Transport library. For the computation time, we will
in addition compare the computation time between CPU and GPU versions.

The performance results of the AUC are in table 5 while the computation times are
in table 6. Concerning the AUC, for the best algorithm Source Scaling (SC), we obtain
with 1500 training voxels an AUC of 0.849, and an AUC of 0.850 with 13000 voxels.
The difference between the two do not seem to be significant. For other algorithms
like Subspace Alignment (SA), we obtain an AUC of 0.814 with 1500 voxels and an
AUC of 0.807 with 13000. In this case the performance decrease by increasing the
number of training samples. By using only a subset of 100 voxels, we clearly see that
the performances are worse than with 1500 because we obtain an AUC of 0.768 and of
0.693 for SC and SA respectively. From these results, it seems that the performances
obtained rapidly reach a maximal value for a small number of training voxels compared
to the number initially available. This could be explained by the fact that the initial
space of voxels can be reduced to a much smaller subset properly reflecting the same
statistical distribution.

1https://github.com/rflamary/POT
2https://github.com/cudamat/cudamat

19

Table 5: AUC obtained with the different unsupervised domain adaptation algorithms
by increasing the number of source voxels used to adapt and to learn the linear SVM.

#voxels SA SC OT OT2 OT3
100 0.693 0.768 0.718 0.560 0.725
250 0.746 0.814 0.750 0.621 0.711
500 0.805 0.841 0.808 0.694 0.768

1000 0.790 0.839 0.812 0.668 0.770
1500 0.814 0.849 0.802 0.678 0.766
2000 0.821 0.855 0.814 0.658 0.761
3000 0.824 0.853 0.812 0.650 0.754
5000 0.809 0.851 0.815 0.649 0.752
9000 0.819 0.852 0.824 0.662 0.768

13000 0.807 0.850 0.824 0.643 0.615

Table 6: Computation time in seconds obtained with the different unsupervised domain
adaptation algorithms by increasing the number of source voxels used to adapt and to
learn the linear SVM. The computation time only takes into account the application of
the domain adaptation algorithm.

#voxels SA SC OT OT2 CPU OT3 CPU OT2 GPU OT3 GPU
100 0.03 0.02 0.01 0.02 0.27 0.03 1.30
250 0.03 0.03 0.03 0.02 0.47 0.04 1.32
500 0.03 0.03 0.10 0.06 0.95 0.05 3.06

1000 0.05 0.04 0.40 0.22 1.28 0.07 0.62
1500 0.19 0.05 1.03 0.55 2.89 0.11 0.62
2000 0.21 0.06 2.50 1.02 14.33 0.17 2.95
3000 0.23 0.05 4.77 2.51 17.84 0.27 1.27
5000 0.37 0.07 21.65 6.27 41.60 0.66 2.06
9000 0.69 0.08 64.44 19.56 110.70 2.00 4.15

13000 0.95 0.10 169.67 41.45 262.34 5.46 8.15

In term of computation time, the Source Scaling one is the faster with a computation
time going from 0.05 second at 1500 voxels to 0.10 second at 13000 voxels. This was
expected since the computation of this algorithm is linear in the number of samples and
in the number of features. The algorithm OT2 presented in [3] had, among others, the
aim to outperform the computation time of the original optimal transport OT because
of the use of Sinkhorn-Knopp algorithm [16]. This increase of speed is confirmed here
since the computation time of OT rapidly form a gap with the one of OT2 that give
respectively computation times of 170 and 41 seconds with 13000 voxels. However,
the algorithm OT3 presented in [4] is based on OT2 by using the Sinkhorn-Knopp
algorithm, but the use of the class regularization adds a large increase in computation
time required, making OT3 slower than the original transport with 262 seconds required
for 13000 voxels. Finally, the GPU implementations allow to decrease the computation
time greatly. At 13000 voxels, the algorithms OT2 and OT3 that required 41 and 262
seconds fall to respectively 5 and 8 seconds. This is a large gain in computation time.
But by increasing even more the number of voxels, these GPU implementations are
also expected to require large computation time due to their polynomial complexity in
the number of samples.

20

5 Original contributions
We have seen in the previous section how to successfully use optimal transport based
algorithms to adapt the data coming from one distribution to classify data from another
distribution. We now present an original method using optimal transport to select a
subset of common features between two data distributions in sub-section 5.1. Then
we present preliminary work in sub-section 5.2 with the aim to compute the optimal
coupling between two distributions while at the same time learning the transportation
cost metric.

5.1 Feature selection using optimal transport
Description of the method: Until now, we have used the optimal transport between
matrices SSS and TTT that were both of dimensions n× f with n = 1500 voxels and f = 95
features. The application of an optimal transport based algorithm between two such
matrices produce the optimal coupling matrix γ of dimensions n× n. The geometric
interpretation is that, to minimize the divergence between the distribution of SSS and TTT ,
we can associate the source samples with the target samples with which they have the
highest coupling values. The idea of the proposed method is to pass from the sample
representation space (matrices n× f) to the feature representation space (matrices f ×
n). Then we apply the OT2 [3] algorithm between SSS′ and TTT ′ giving a coupling matrix γ

of dimensions f × f . Geometrically, we suppose that if the feature i is similar between
the two domains, then the value γii should be large. And this value should be small if
the features are different.

To transport the source features on the target features, the features have to be de-
scribed by a list of source and target samples. Intuitively, there should be some kind
of correspondence between the sample number i describing the source features and the
sample number i describing the target features. There is thus a preliminary step consist-
ing in finding which sample will be used to describe the features in the source and target
domains. For this, we propose to use the method presented in sub-section 4.1 where
we apply the OT algorithm between the source and target samples before associating
each source sample with the target one corresponding to the highest coupling.

Given the optimal coupling γ of dimensions f × f , we sort the features into F where
the feature number i in F is the one having the ith highest coupling value between the
two domains. Algorithm 1 summarize our proposed method. After having obtained
the ordered list of features F , it is then possible to use the d < f first features of F
for the classification problem at hand. This method can be applied as a preprocessing
before using a domain adaptation algorithm to discard the features that are completely
different across the two domains. This can also be applied if no adaptation is used to
select the common features between training and test data.

Algorithm 1: Unsupervised feature selection for domain adaptation
Input: Source labeled matrix SSS (n× f), Target matrix TTT (m× f)
Output: The order F of the f features by decreasing similarity between SSS and TTT

Generate SSSccc of dim x× f representing the different classes s.t. x≤ n and x≤ m
Generate TTT uuu of dim x× f using equation 19
Normalize SSSccc and TTT uuu independently to have both zero mean and unit variance.
γ = OT 2(SSS′ccc,TTT

′
uuu) {Algo [3] applied on the transposed matrices}

F = argSortDesc({γii|i ∈ [0, f [}) {Returns the features sorted by γii}

Experiments on Office Caltech: With this algorithm, we suppose that the features

21

available are not all useful. This is the case of datasets described with Bag of Words
(BOW) methods where a large set of f predefined words is first established: each
sample s is described by f features where the value of the feature i is the number
of occurrences of the word i in the sample s. As an example of dataset described
with BOW in domain adaptation, we will use the Office-Caltech dataset of images. In
this dataset, the classification task is to assign an image with the class of the object
it contains 3. It is composed of 4 domains A, C, W and D containing respectively
958, 1123, 295 and 157 images belonging each to one of 10 different classes. We
will use the SURF [18] features made available on the website of the dataset with
which each image is described by a feature vector of size 800. We will also use neural
network encodings that we extracted from two pretrained neural networks which are
CaffeNet (based on AlexNet [19]) and GoogleNet [20]. These neural networks were
trained on the large dataset of images ImageNet containing millions of images where
the classification task is to classify images among 1000 classes. By default, these
networks return a probability vector of size 1000. We remove the last layer of these
networks and use the output of the previous layer having a size of 4096 for CaffeNet
and a size of 1024 for GoogleNet. To resume, for each image of the Office-Caltech
dataset, we give them as input of the pretrained neural networks, and we obtain as
output a feature vector of size 4096 or 1024 describing this image.

We compare the unsupervised domain adaptation algorithms US NA and US OT3
on the presented dataset. Our experimental protocol to evaluate the proposed method is
based on the one used in [4]. We consider the 12 domain adaptation problems by taking
repeatedly one of the domains A, C, W and D as source and one of the three remaining
as target TTT . For one domain adaptation problem, we randomly sample 20 images per
class (8 per class if the source domain is D). This gives us 200 images (resp. 80) as
our source domain SSS. We then apply algorithm 1 with SSS and TTT to obtain the ordered
list of features F by decreasing similarity between SSS and TTT . For an increasing number
of features d, we use the d first features of F to adapt SSS and TTT with one of the two
adaptation algorithms. After, we use a 1NearestNeighbor algorithm using the source
adapted data SSSaaa as training to compute the classification accuracy on the target data
TTT . We repeat this 10 times, and we report the mean accuracy over the 10 iterations.
An extract of the results without adaptation (US NA) is in figure 12 (full results are
in appendix in figures 151719) and for the domain adaptation algorithm US OT3 in
figure 13 (full results in figures 161820).

3https://cs.stanford.edu/ jhoffman/domainadapt/

22

Figure 12: Result of our proposed feature selection method on 2 adaptation problems
(over the 12 possible) with the algorithm US NA (no adaptation). First column us-
ing surf histograms, second column using CaffeNet encoding and last column using
GoogleNet encoding. Our proposed approach consists in selecting the features by De-
scending order of their coupling between source and target data. In addition, we plot
the results by performing a selection in reverse order: Ascending, and by selecting
Randomly the features.

Figure 13: Same results as in figure 12 but by using the US OT3 domain adaptation
algorithm.

From the results in 12 we see that globally, the values of the curve Descending are
always higher than the values of the curve Random, itself always higher than the curve
Ascending. This means that by taking first the features the more similar between the
two domains (by Descending order of similarity), we achieve a better accuracy than
by taking them in Ascending order. With SURF histograms for W → D, we obtain
with the 800 features a mean accuracy of 50%. By selecting only the 300 first features
having the highest coupling, we obtain a mean accuracy of 65%. And selecting the
300 first features having the lowest coupling gives an accuracy of 18%. This selection

23

reflects that by taking similar features between the two domains, we make the job
easier for the classification model that can achieve better performances with a smaller
number of features. For neural encodings, we see that the curve Random is very close
to the Descending one. But there is also a large gap between the Ascending curve
and the two others for a small number of features selected. Here the behavior shown
is that if we take the features dissimilar between the two domains, then it is likely
that the performances of the resulting classification model will be poor. By taking 1

4
of the neural features randomly, we obtain on average the same performances as by
taking all the features. This could be explained by the fact that the features extracted
by neural networks are correlated between each other and that taking a representative
subset of them is as good as taking all of them. Taking 1

16 of the neural features that
have the highest similarity allows to give as good if not better performances as by
taking all of them. If we compare the results with (figure 13) and without (figure 12)
adaptation, we obtain as expected better results by adapting the data. Globally, the
results with all features (red lines) are higher with adaptation than without. We also
see that with adaptation, the Ascending curve increase to its maximal value sooner
than without adaptation. This can be explained by the fact that there are less features
that are different across the two domains when we adapt the data. Intuitively, we can
think that, the better the adaptation algorithm, the sooner the Ascending curve reach
its maximal value. Because the better the adaptation algorithm, the less the number of
features different across the two domains.

Experiments on our prostate data: We can also apply our proposed feature selec-
tion approach to our prostate data. Indeed, we have for each voxel a list of 95 features.
As shown in sub-section 2.2, some of these features have a clear shift between our
source and target domains. Because of this, a classification model learned only on the
source data without adaptation completely fails to classify correctly the target data, as
shown in table 3 (algorithm US NA). We repeat the protocol presented in sub-section
4.1 in the context of our feature selection method. Here we will compare only the
algorithms US NA, US SC and US OT3.

Figure 14: Results of our proposed feature selection method on the task to adapt our
1.5T prostate data to our 3T data. Each figure shows the results with one of three
unsupervised adaptation algorithm presented previously

For the Office Caltech dataset, we saw that the more we take features, the higher
the performances. Here however, without adaptation (algorithm US NA), the more
we take features, the smaller the AUC is, and thus the classification model becomes
less and less accurate. But we observe without adaptation a similar behavior as the
one presented for the Office Caltech dataset: the values of the curve Descending are

24

always higher than the values of the curve Random, itself always higher than the curve
Ascending. In fact, until 65 over 95 features with the decreasing order, the AUC is of
0.70. Then it falls sharply to 0.5. It seems that there is a small subset of features shifted
between the two domains. And if we discard them, we are able to learn a model to
deal with the task, even if the performances are not exceptional. When we look at the
performances of the two adaptation algorithms US SC and US OT3, we see a different
behavior. It seems that taking the features randomly gives better performances than by
taking them in Ascending order of their similarity, itself giving higher performances
than by taking them randomly. This behavior could be expected: when we select the
features by increasing or decreasing order of their similarity between the two domains,
we do not take into account how much these features contribute to correctly solve our
classification task. In this case, we can think that the features allowing to give good
performances are the ones in the middle. Overall, we see that the performances rapidly
reach their maximum with 35 over 95 features selected. The proposed feature selection
method seems to work for our handcrafted features only when no adaptation is applied
later.

5.2 Optimal transport with learned transport cost metric
Given two distributions SSS and TTT , an algorithm solving equation 14 will output the
optimal coupling γ between SSS and TTT . This coupling is computed with regard to the
transportation cost matrix C. Until now, we have used in all our experiments C as the
matrix of pairwise squared euclidean distances between each pair (xS,xT)∈ SSS×TTT . Our
idea is to learn (in addition to γ) at the same time the transport cost metric C. For this,
we want to learn a kernelized metric that would allow to capture non linearity between
the two distributions using the kernel trick. We base this work on the idea of multiple
kernel learning [11].

In multiple kernel learning, we suppose that we have a set of m predefined kernels
K between our two distributions:

• Gaussian kernels exp(− ||xS−xT ||2
2σ2) for different values of σ;

• Polynomial kernels (x′SxT +1)d for different values of d.

Our preliminary proposed problem to solve is:

J(γ,µ) = argmin
γ∈Π(µ̂S,µ̂T),µ

〈γ,C〉F −
1
λ

E(γ)

s.t.

Ci, j = 1−
m

∑
t=1

µtKt(xS
i ,x

T
j)

m

∑
t=1

µt = 1 and µt ≥ 0

(20)

where µ is the vector of size m with values summing to 1 and µt the weight of the
predefined kernel Kt . The equation to solve is the same as the one proposed by [3] with
in addition the parameter µ and two constraints depending on it. Using the Bonnans
theorem [21], we know that J2(µ) = minγJ(γ,µ). This equation means that to solve
20, we can optimize alternatively γ and µ by fixing one of the two and optimizing the
other. To optimize γ, we can employ the efficient algorithm of [3] using initially µ as

25

the uniform vector summing to 1. To update µ, we propose to use a gradient descent
algorithm.

The gradient descent requires to compute the gradient of the function J(µ). Let us
now compute it:

∂J
∂µ

=∂(〈γ,111−
m

∑
t=1

µtKt〉F −
1
λ

E(γ))

=∂(tr((111−
m

∑
t=1

µtKt)
′
γ))

= tr(∂((111−
m

∑
t=1

µtKt)
′
γ))

= tr(∂((111−
m

∑
t=1

µtKt)
′)γ)

= tr((−∂(
m

∑
t=1

µtKt)
′)γ)

= tr((−
[
K′1, ...,K

′
m
]
)γ)

=

− tr(K′1γ)
...

− tr(K′mγ)


=

〈K1,−γ〉F
...

〈Km,−γ〉F



(21)

With η as the gradient step, the update µ = µ−η
∂J
∂µ is computed using:

µi = µi−η〈Ki,−γ〉F (22)

for each µi. 〈Ki,−γ〉F is computed as a term to term matrix product between Ki and
−γ and then by summing all the values of the resulting product matrix. After having
updated the vector µ, it is very likely that it will no longer satisfy the constraint of
having its values summing to 1: ∑

m
t=1 µt = 1. We then project the point µ on the nearest

point x that belongs to the simplex by solving the equation:

µ = argmin
x∈∆m

||x−µ||

s.t. ∆
m = {(x1, ...,xm) ∈ Rm|(

m

∑
i=1

xi) = 1,xi ≥ 0}
(23)

Having found µ, we can recompute the new transportation cost C with the new weighted
sum of kernels. Then we can again optimize γ with C and then again until µ converges.

After having learned µ and γ, we want to be able to transport the source samples to
the target ones, as done in [4] through equation 17. In there paper, the authors explain
that this equation is valid only with C equal to the pairwise squared euclidean distance
matrix. But here, we learn C as a weighted sum of kernels, and equation 17 can no
longer be used. We can then solve for each source point the equation:

x̂S
i = argmin

x∈R
∑

j
γ(i, j)c(x,xT

j) (24)

26

This equation can be solved with specialized optimization toolkits based on the Broy-
den–Fletcher–Goldfarb–Shanno method (BFGS) allowing to solve non linear optimiza-
tion problems without constraints. This is the case here since we project the source
samples after having found γ and µ. When using BFGS algorithms, we can specify the
initial point x ∈ R. We propose as heuristic to use, for one source point xS

i , the target
point xT

j with which it has the maximum coupling value in γ.
In this current version, our optimization problem do not work well. In fact, it has

been found that at the end, the vector µ will give a weight of 1 to one kernel and a
weight of 0 to all the others. The kernel which is assigned a weight of 1 is the kernel
having the mean value closest to 0. By looking at our optimization problem 〈γ,C〉F , we
see that a matrix C of zeros is a trivial solution that allows to minimize the problem.

Future work: The report of this internship is made for the 30th of June while
the internship ends the 28th of July, one month after. During this future month, we will
explore how to constrain the transport cost matrix C to avoid to learn the trivial solution
0. The aim would be to establish what should induce a high/small transport cost. For
this, we have several ideas. The first one is to use the class regularization from [4]
shown in equation 15. The idea with this constraint is that, we would like the transport
cost to look like in figure 7 as a matrix with blocs on the diagonal. We will also explore
another idea based on the preservation of the distances between source samples before
and after barycentric interpolation. With this, the idea is to add a constraint to prevent
to transport a set of source samples that were separable but become inseparable after
the interpolation.

6 Conclusion
The main motivation of this internship was to study and extend domain adaptation
algorithms for the task of prostate cancer detection in MRI images. The algorithms
proposed in the previous research in the subject were semi-supervised because they
used some annotations from the target domain. We extended the algorithms in the di-
rection of unsupervised domain adaptation that do not need any label information from
the target domain to learn a classification model to be deployed on this target domain.
We presented extensive empirical evaluations between the different semi-supervised
and unsupervised approaches considered. Some of the unsupervised approaches are
based on the optimal transportation theory, and it was shown that the use of the optimal
transport method using class regularization is the one that give the sharpest distinction
between cancer and non cancer tissue. However, this sharpness comes at the cost of
a precision that may not always be good. We have also shown that a simple linear
transformation of the source data allowed to learn a classifier that gives the best perfor-
mances on the target data. Some of the results presented in this study were submitted
and accepted for publication in the GRETSI 2017 conference where we will give an
oral presentation in September.

Another motivation was to study how the optimal coupling matrix γ of the optimal
transport could be used for domain adaptation. We presented an original unsupervised
feature selection method for domain adaptation. This method allows to quantify how
much a feature is shifted between the source and target domain with the use of optimal
transport. It was shown that, when no adaptation is used, we can increase the per-
formance of a classification model by discarding the features that are the least similar
between the two domains.

Finally, we are currently investigating how to modify the formulation of the opti-

27

mal transport. Our aim is to not only learn the optimal coupling γ, but also to learn
the associated transport cost metric. For this, we want to use the idea of Multiple Ker-
nel Learning to learn C as a weighted sum of kernels. In the future for the end this
internship, we will continue the work started in this direction.

References
[1] R. Aljundi, J. Lehaire, F. Prost-Boucle, O. Rouvière and C. Lartizien. Trans-

fer Learning for Prostate Cancer Mapping Based on Multicentric MR Imaging
Databases. In Medical Learning Meets Medical Imaging, 74-82, 2015.

[2] R. Aljundi. Transfer Learning for Prostate Cancer Mapping Based on Multicen-
tric MR imaging databases. Master’s thesis, University Jean Monnet, 2015.

[3] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Pro-
ceedings of NIPS, 2292-2300, 2013.

[4] N. Courty, R. Flamary and D. Tuia. Domain adaptation with regularized optimal
transport. Proceedings of ECML/PKDD, 1-16, 2014.

[5] R. L. Siegel, K. D. Miller and A. Jemal. Cancer statistics, 2016. CA: a cancer
journal for clinicians, vol. 66, no 1, p. 7-30, 2016.

[6] Institut national du cancer. Les cancers en France en 2016 - L’essentiel des faits
et chiffres. 2016.

[7] E. Niaf, O. Rouvière, F. Mège-Lechevallier, F. Bratan and C. Lartizien. Computer-
aided diagnosis of prostate cancer in the peripheral zone using multiparametric
MRI. Phys. Med. Biol., 57(12): 3833-3851, 2012.

[8] J. Lehaire, R. Flamary, O. Rouvière et C. Lartizien. Computer-aided diagnos-
tic system for prostate cancer detection and characterization combining learned
dictionaries and supervised classification. IEEE ICIP, 2251-2255, 2014.

[9] E. Niaf. Aide au diagnostic du cancer de la prostate par IRM multi-paramétrique
: une approche par classification supervisée. PhD thesis, University Lyon 1,
2012.

[10] J. Lehaire. Détection et caractérisation du cancer de la prostate par images IRM
1.5T multiparamétriques. PhD thesis, University Lyon 1, 2016.

[11] J. Zhuang, J. Wang, S. Hoi and X. Lan. Unsupervised multiple kernel learning.
Journal of Machine Learning Research-Proceedings Track, 20, 129-144, 2011.

[12] B. Fernando, A. Habrard, M. Sebban and T. Tuytelaars. Unsupervised visual do-
main adaptation using subspace alignment. Proceedings of ICCV, 2960-2967,
2013.

[13] C. Villani. Optimal transport, old and new. Springer Science & Business Media,
2008.

[14] S.J. Pan and Q. Yang. A survey on transfer learning. In IEEE Trans. Knowl. Data
Eng. 22(10):1345-1359, 2010.

28

[15] A. van Opbroek, M. A. Ikram, M. W. Vernooij and M. de Bruijne. Transfer learn-
ing improves supervised image segmentation across imaging protocols. In IEEE
Trans Med Imaging, 34(5):1018-30, 2015.

[16] P.A. Knight. The Sinkhorn-Knopp algorithm: convergence and applications.
SIAM Journal on Matrix Analysis and Applications, 30 (1) pp. 261-275, 2008.

[17] J. Platt. Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods. Advances in large margin classifiers, 10(3), 61-
74, 1999.

[18] H. Bay, T. Tuytelaars and L. Van Gool. Surf: Speeded up robust features. Com-
puter vision–ECCV 2006, 404-417, 2006.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097-1105, 2012.

[20] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9,
2015.

[21] A. Rakotomamonjy, F.R. Bach, S. Canu and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 2008, vol. 9, no Nov, p. 2491-2521.

29

Appendices
A Feature on voxel used

Table 7: Total list of the 115 features extracted for each voxel coming from MR images
acquired on the 1.5T scanner and on the 3T scanner.

T2ROUGHT2w T21-st Order StatisticsMean T21-st Order StatisticsMedian
T21-st Order Statisticsstd T21-st Order Statisticsvar T2Haralick featuresautoc
T2Haralick featurescontr T2Haralick featurescorrm T2Haralick featurescoorp
T2Haralick featurescprom T2Haralick featurescshad T2Haralick featuresdissi
T2Haralick featuresenerg T2Haralick featuresentro T2Haralick featureshomom
T2Haralick featureshomop T2Haralick featuresmaxpr T2Haralick featuressosvh
T2Haralick featuressavgh T2Haralick featuressvarh T2Haralick featuressenth
T2Haralick featuresdvarh T2Haralick featuresdenth T2Haralick featuresinf1h
T2Haralick featuresinf2h T2Haralick featuresindnc T2Haralick featuresidmnc
T2Gradient Featuressobel1 T2Gradient Featuressobel2 T2Gradient Featuressobel3
T2Gradient Featuressobel4 T2Gradient Featuressobel5 T2Gradient Featureskirsch
T2Gradient Featuresgrad1 T2Gradient Featuresgrad2 ADCROUGHADC 0-800
ADC1-st Order StatisticsMean ADC1-st Order StatisticsMedian ADC1-st Order Statisticsstd
ADC1-st Order Statisticsvar ADCHaralick featuresautoc ADCHaralick featurescontr
ADCHaralick featurescorrm ADCHaralick featurescoorp ADCHaralick featurescprom
ADCHaralick featurescshad ADCHaralick featuresdissi ADCHaralick featuresenerg
ADCHaralick featuresentro ADCHaralick featureshomom ADCHaralick featureshomop
ADCHaralick featuresmaxpr ADCHaralick featuressosvh ADCHaralick featuressavgh
ADCHaralick featuressvarh ADCHaralick featuressenth ADCHaralick featuresdvarh
ADCHaralick featuresdenth ADCHaralick featuresinf1h ADCHaralick featuresinf2h
ADCHaralick featuresindnc ADCHaralick featuresidmnc ADCGradient Featuressobel1
ADCGradient Featuressobel2 ADCGradient Featuressobel3 ADCGradient Featuressobel4
ADCGradient Featuressobel5 ADCGradient Featureskirsch ADCGradient Featuresgrad1
ADCGradient Featuresgrad2 DYN1-st Order StatisticsMean DYN1-st Order StatisticsMedian
DYN1-st Order Statisticsstd DYN1-st Order Statisticsvar DYNHaralick featuresautoc
DYNHaralick featurescontr DYNHaralick featurescorrm DYNHaralick featurescoorp
DYNHaralick featurescprom DYNHaralick featurescshad DYNHaralick featuresdissi
DYNHaralick featuresenerg DYNHaralick featuresentro DYNHaralick featureshomom
DYNHaralick featureshomop DYNHaralick featuresmaxpr DYNHaralick featuressosvh
DYNHaralick featuressavgh DYNHaralick featuressvarh DYNHaralick featuressenth
DYNHaralick featuresdvarh DYNHaralick featuresdenth DYNHaralick featuresinf1h
DYNHaralick featuresinf2h DYNHaralick featuresindnc DYNHaralick featuresidmnc
DYNGradient Featuressobel1 DYNGradient Featuressobel2 DYNGradient Featuressobel3
DYNGradient Featuressobel4 DYNGradient Featuressobel5 DYNGradient Featureskirsch
DYNGradient Featuresgrad1 DYNGradient Featuresgrad2 DYNnormalizedDyn
DYNsemi-quantitativeWI DYNsemi-quantitativeWO DYNsemi-quantitativeA
DYNsemi-quantitativeTa DYNsemi-quantitativeSIonset DYNsemi-quantitativeSImax
DYNsemi-quantitativeSIend DYNsemi-quantitativeTonset DYNsemi-quantitativeTmax
DYNsemi-quantitativeArea

30

Table 8: List of the 20 features that were removed from the original set of features
extracted from the 1.5T and 3T MRI.

Feature removed Reason
T2Haralick featurescoorp because same as T2Haralick featurescorrm
T2Haralick featuresdvarh because same as T2Haralick featurescontr
ADCHaralick featurescontr because too much value 0 for 3T
ADCHaralick featurescorrm because too much value 1 for 3T
ADCHaralick featurescoorp because too much value 1 for 3T
ADCHaralick featurescprom because too much different between 1.5T and 3T
ADCHaralick featurescshad because too much value 0 for 3T
ADCHaralick featuresdissi because too much value 1 for 3T
ADCHaralick featuresenerg because too much value 0 for 3T and 1.5T
ADCHaralick featureshomom because too much value 1 for 3T
ADCHaralick featureshomop because too much value 1 for 3T
ADCHaralick featuresmaxpr because too much value 0 for 3T
ADCHaralick featuresdvarh because too much value 0 for 3T
ADCHaralick featuresdenth because too much value 1 for 3T
ADCHaralick featuresinf1h because too much value 0 for 3T
ADCHaralick featuresinf2h because too much value 1 for 3T
ADCHaralick featuresindnc because too much value 1 for 3T
ADCHaralick featuresidmnc because too much value 1 for 3T
DYNHaralick featurescoorp because same as DYNHaralick featurescorrm
DYNHaralick featuresdvarh because same as DYNHaralick featurescontr

31

B Results feature selection dataset Office Caltech

Figure 15: Adaptation algorithm: no adaptation. Image encoding: surf histograms.

Figure 16: Adaptation algorithm: US OT3 [4]. Image encoding: surf histograms.

32

Figure 17: Adaptation algorithm: no adaptation. Image encoding: using pretrained
CaffeNet [19].

Figure 18: Adaptation algorithm: US OT3 [4]. Image encoding: using pretrained
CaffeNet [19].

33

Figure 19: Adaptation algorithm: no adaptation. Image encoding: using pretrained
GoogleNet [20].

Figure 20: Adaptation algorithm: US OT3 [4]. Image encoding: using pretrained
GoogleNet [20].

34

	Introduction
	Medical context
	Data acquisition
	Features description

	Domain adaptation for prostate cancer mapping
	Semi-supervised domain adaptation
	Unsupervised domain adaptation

	Experiments
	Methodology
	Results

	Original contributions
	Feature selection using optimal transport
	Optimal transport with learned transport cost metric

	Conclusion
	Appendices
	Feature on voxel used
	Results feature selection dataset Office Caltech

