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Introduction

Machine learning consists in the study and design of algorithms that build models able to
handle non trivial tasks as well as or better than humans and hopefully at a lesser cost. These
models are typically trained from a dataset where each example describes an instance of the
same task and is represented by a set of characteristics and an expected outcome or label which
we usually want to predict. As a practical case, the underlying task can be that of a bank which
has to decide whether it should grant a credit to a customer or not. After having collected a
dataset describing past credits granted by the bank, a model can be automatically built based
on characteristics of the credits (duration, rate, purpose, amount...), of the customers (gender,
age, incomes, profession...) and a label stating, e.g., whether or not the customer succeeded
in repaying the loan. The model can then be used by the bank to evaluate the risk for new
customers applying for a loan to be creditworthy or not. This kind of tasks addressed in this
thesis belongs to the supervised classification paradigm. The supervision comes from the fact
that we provide to the learning algorithm, in addition to the characteristics, the discrete label
of each training example.

All along this document, we will only focus on such supervised classification problems where
the number of possible labels is finite. Therefore, we will not address regression (where the num-
ber of outcomes is infinite) or unsupervised tasks (where the label is supposed to be unknown
at training time, like, e.g., in clustering or dimensionality reduction).

Whatever the learning paradigm, an element shared by the previous settings and required for
the success of any machine learning algorithm is related to the quality of the set of characteristics
describing the data, also referred as data representation or features. In supervised learning, the
more the features describing the examples are correlated with the label, the more effective the
model will be. For example, features describing the wages of the customer will probably be
more relevant to estimate his/her creditworthiness than the height and weight of the person.
Therefore, defining features that capture well these correlations is of high importance in machine
learning to build an effective supervised model.

There exist three main families of features. The first one corresponds to the “observable”
features which can be easily and directly measured, such as the wages of customers, the blood
pressure of a patient, etc. The second category gathers the “handcrafted” features that typically
require a certain expertise about the domain, like the SURF [Bay et al.l 2006 image descriptors

used in computer vision. The last family, we will mainly focus on in this thesis, corresponds
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to the “latent” features that are usually automatically learned from the training data as done
in deep learning |Goodfellow et al.l 2016, metric learning [Kulis, 2013, Bellet et al., [2015],
PCA, or matrix factorization to cite a few methods. The main advantages of this last category
of features (that led to the emergence of the sub-field called representation learning) are the
following: (i) they allow us to improve the machine learning task by better representing the
problem at hand and capturing automatically the correlations with the labels, (i) they allow to
overcome the limitations of the handcrafted features that often require a costly human expertise

and (74i) they are often computationally convenient to process.

The contributions of this thesis fall into the scope of this last category. More precisely, we are
interested in the specific setting of learning a discriminative representation when the number
of data of interest, often called “positive” examples, is limited. This de facto excludes deep
learning-based methods which are nowadays those producing indisputably the best performing
latent features, but that often require large quantities of training data as well as a tedious

tuning process.

A lack of data of interest can be found in different scenarios. The first one arises when the
labels of the examples are highly imbalanced, leading to a training dataset where examples of
the class of interest are very scarce. This is typically the case in bank fraud detection whose
goal consists in detecting fraudulent transactions. In this scenario, the number of frauds is
dramatically much smaller than the quantity of genuine transactions. The key issue here is to
prevent the learning algorithm from predicting every single example as belonging to the normal
class. While such a decision would seem very effective from an accuracy perspective (indeed,
more than 99.5% of the transactions are usually genuine), it would definitely fail by missing all

the examples of interest (i.e., the frauds).

The scarcity of positive examples also occurs when the data is costly either in terms of
money, time or expertise, or even impossible due to the limited history available. This is often
the case in the medical domain when one aims at creating a computer aided diagnostic system
for a certain disease: doctors often struggle to gather many positive examples due to the cost of
capturing features (e.g., MRI scans required to be annotated by experts) or the limited number
of past patients, e.g., affected by a rare disease. The peculiarity of this kind of applications
prevents us from using standard machine learning methods, like neural networks, which require

a large number of examples to learn millions of parameters at the risk of over-fitting the data.

The last scenario finds its roots from the domain adaptation setting [Ben-David et al., 2007,
Redko et al., [2019] where the learning algorithm has access to a labeled source dataset as well
as target examples with few or even no label. The goal is to benefit from the source to learn
an efficient model over the target domain, where the two domains are supposed to be related,
yet different. As a practical case, a hospital can use a computer aided diagnostic system for
a specific disease developed in another hospital where the characteristics of the patients are
measured differently. Due to the differences in the acquisition process (e.g., two different MRI

scanners) between the source and target sets, a model learned from the source set will perform
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poorly on the target set if the discrepancy between the two domains is not taken into account
by the model.

To handle these different scenarios, we investigate in this thesis how to learn good represen-
tations through the lens of different machine learning frameworks. First, we tackle the problem
of imbalanced learning with a class of interest composed of a few examples by learning a metric
that induces a new representation space where the learned models do not favor the majority
examples. Second, we propose to handle the scenario with few available examples by learning
at the same time a relevant data representation and a model that generalizes well through
boosting models [Schapire and Singer, 1999| using kernels [Fan et al., 2005| as base learners
approximated by random Fourier features [Rahimi and Recht, 2008|. Finally, to address the
domain adaptation scenario where the target set contains no label while the source examples
are acquired in different conditions, we propose to reduce the discrepancy between the two do-
mains by keeping only the most similar features optimizing the solution of an optimal transport

problem [Villani, [2008] between the two domains.

Context of this thesis. The work presented in this thesis was carried out in the Data
Intelligence team of the Hubert Curien laboratory which is a joint research unit (UMR 5516)
between the Jean Monnet University of Saint-Etienne, the University of Lyon, the CNRS and
the Institut d’Optique Graduate School. The thesis was financed in part by a ministerial
fellowship and by the French project APRIORI ANR-18-CE23-0015.

Outline of the thesis. This manuscript is composed of a background chapter followed by

three chapters each presenting one of our contributions mentioned above.

e Chapter [I|starts by a general presentation of the supervised classification paradigm which
is at the core of this thesis. Then, we present some machine learning algorithms that are
used in the following chapters. Finally, we briefly describe some background in metric
learning [Kulis, 2013, Bellet et al., 2015|, random Fourier features |[Rahimi and Recht,
2008] and optimal transport [Villani, 2008] required for the understanding of our contri-

butions.

e Chapter [2| presents our first contribution which consists in the optimization of a metric
specifically dedicated to address the challenging problem of learning from highly imbal-
anced datasets. State-of-the-art metric learning methods usually learn a metric that
satisfies a set of constraints which typically aim at moving closer examples of the same
class while pushing away examples of different labels. Our proposed method relies on
two strategies to deal with the class imbalance: (i) a selection of the set of constraints
taking into account the class imbalance and (71) a decomposition of the loss into the sum
of terms capturing the constraints between examples of different labels. Benefiting from
the uniform stability framework [Bousquet and Elisseeff, 2002|, we prove a generalization

bound that has the main advantage to involve the proportion of rare examples and which
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encompasses standard metric learning bounds. We show experimentally that our two
complementary strategies allow us to reduce the negative impact of an increase in the

imbalance.

e Chapter |3] is dedicated to our second contribution. We propose a method that jointly
learns a classification model and a representation of the data suited for the classification
task at hand and generalizing well in the presence of few labeled examples. Our method
leverages two state-of-the-art learning strategies: gradient boosting |Friedman, 2001| to
build the classification model, and random features to build the representation. Tradi-
tional gradient boosting methods induce an ensemble of regression models by adding one
by one to the ensemble the model that best learns the errors made by the previous ensem-
ble. The originality of our contribution comes from the fact that we train at each iteration
a kernel defined as a weighted sum of random Fourier features. We show experimentally
that the proposed method allows to learn efficiently from non-linearly separable data a

compact latent representation.

e Chapter[is devoted to the presentation of our third contribution which falls into the scope
of domain adaptation where no labeled examples are available from the target domain.
The model can benefit from an abundance of labeled data coming from a source domain
where the prediction task is the same, but with data acquired in different conditions.
To reduce the discrepancy between the two domains, we introduce in this context a
feature selection method where the idea is to train a model using the most similar features
between the two domains, and to discard the most dissimilar ones. The originality of
the contribution is that the similarity of a feature across the two domains is given by
the solution of a problem based on the optimal transportation theory. We evaluate our
method on different benchmarks and show that selecting the most similar features can
improve the performances compared to using all features. We also validate our algorithm

on a real world medical imaging task.
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Chapter 1

Background

Abstract

We give in this chapter a general presentation of the supervised classification paradigm
which is at the core of this thesis. Then, we present some machine learning algorithms that
are used in the following chapters. Finally, we briefly describe some background in metric
learning [Kulis| 2013} Bellet et al., [2015], random Fourier features [Rahimi and Recht), [2008]|

and optimal transport [Villani, 2008| required for the understanding of our contributions.

1.1 Supervised learning

1.1.1 Learning from labeled data

Throughout this thesis, we consider supervised tasks where the training examples are d-dimensional
real-valued vectors each belonging to an input space X C R and are assigned a class label com-
ing from a discrete output space ) such that |Y| = ¢. We mainly consider in this thesis the
binary classification setting where ¢ = 2 and Y = {—1,+1}. Together, the spaces X and Y
form a joint space noted Z =X x ).

When training a model, the supervised learning algorithms are provided with a training set
composed of m labeled examples S = {z; = (x;,y;)}I" where Vie {1,...,m}, z; e X, y; € Y
and z; € Z. We further define the set of examples as the matrix X = {z;}", such that
X € R™*4 and the set of labels as Y = {yi}™,. We suppose that these n examples are i.i.d.
according to an unknown distribution D over Z and we note this 7.4.d. draw of m elements by
S ~Dm.

Given a predictive task and an associated training set S drawn according to the distribution
D, the aim of supervised learning |Bishop), 2006 is to find using S a model that produces correct
predictions for the examples drawn according to D.

We consider models that are functions of the form h : X — £ with L is the output set which
is mainly induced by the learning algorithm used and often £ C R. Each function h belongs
to a family of functions H that depends on the learning algorithm used. Inside a family H, we

denote by a the parameters that characterize the model h and differentiate it from the other




1.1. Supervised learning

models in H, and we refer to the model A with its parameters as ha. Thus when searching for
a model producing correct predictions, we are actually searching inside a family of functions H
the parameters a inducing the model h, that handles the best the predictive tasks given. By
abuse of notation, we often refer as the trained model and its parameters as h instead of hj,.

The output set L of the model h might be equal to the output space ) or not. For example
in binary classification tasks, we can have £ = R where the sign of the prediction indicates the
class +1 or —1, and the larger the absolute value of the prediction, the larger the confidence in
the prediction. Similarly, we can encounter £ = [0, 1] when the prediction corresponds to the
probability of belonging to a class. For classification tasks with ¢ > 2, we often have £ which
is the set of vectors of size ¢ where each element is a membership probability.

After amodel has been trained, it can be used to make predictions on new examples supposed
to be also i.4.d. from the same distribution D. The aim is that the predictions of the learned
model A will not only be accurate on the examples in S, but also for any (x,y) ~ D.

Usually, a smaller set of n labeled examples T' = {z; = (x;,y;)}I~, called test set, is kept
aside during the training but used by the trained model to make predictions and compare them
with the true labels Y7 in order to measure how well the model performs on new examples not
seen during the training. It is known that such a way to proceed allows us to get an unbiased
estimate of the generalization ability of the model. Figure gives a graphical illustration of
the different notations introduced. It shows a model that perfectly predicts the labels of a set
of examples. In practice, however, a model rarely produces perfect predictions. In order to

compare candidate models, we need performance measures.

1.1.2 Performance measures

~T
Given a trained model h and a set of n examples T with labels Y7 € Y, we define Y e Y™
the set of predicted labels over T" using h. The goal of a performance measure is to compare the
~T
predicted labels in Y~ with the actual labels in Y7 and thus evaluate how good the predicted

labels are. In a classification setting, a usual performance measure is the accuracy, defined as

Number of correctly classified examples

accuracy =
Y Total number of examples

S [ =Y

Y

n

where [] is an indicator function equal to either 0 or 1. The accuracy takes a value in [0, 1]
with a higher value indicating more accurate predictions.

In this thesis, we often deal with binary classification tasks with ) = {—1,+1} where an
example is either of the positive class (+1) or the negative class (-1). In such a context, we
can define other performance measures based on the four quantities described in the confusion
matrix of Table [I.I} The accuracy can be rewritten with these notations as

TP + TN
TP +FN+FP + TN’

accuracy =

10



Chapter 1. Background

1.01

0.51

0.0

—0.51

—1 0 1 2
— Distribution D = Model i @ Training set S = Test set T’

Figure 1.1: Illustration of a toy dataset divided into S with m = 30 (circles) and T with n = 10
(crosses). Each example x is described by d = 2 features (the real-values along the two azes
noted respectively x1 and x2) and by a label among Y = {blue, red}. S and T are supposed
to be drawn according to a distribution D represented in this toy example by the blue and red
concave hulls. Here, the goal is to learn a model using S that can predict the color of a point
given its x1 and xo coordinates. Ideally, this model should predict correctly the label of any point
drawn from D (here drawn inside the two concave hulls). Here, we use the family of models H
of the form ha—(g, 0,05) : T — (01 + 02 cos(03x)) and select by hand the model with paramelers
a=(0.26,0.5,3.1). As the predictions produced by hy are in L =R, they can be converted to a
value in Y by the rule “IF x9 < ha(x1) THEN red ELSE blue”. This model allows to predict with

no mistakes the labels of all examples in T and any possible example drawn according to D.

In imbalance learning, where the number of positive examples (y = +1) is much smaller than
the number of negatives (y = —1), the accuracy is not well suited to evaluate a model. Indeed,
a function predicting all examples as negative would have an accuracy close to 1 while definitely
missing the examples of the class of interest. Because of this, other performance measures are

available focusing more on the minority class. The first one called the precision is defined as

TP

pI‘eCISIOD — W,

and describes how well a model is precise on the positive examples by giving among the predicted
positive examples the proportion that are actually positive. A second one called the recall is

defined as
TP

TP+ FN

It describes how well a model behaves to retrieve the positive examples by giving among the

recall =

actual positive examples the proportion that is recovered.
Maximizing either the precision or recall alone is not enough as it tends to decrease the other

one. Instead, a trade-off between the two is preferred, such as the Ff-measure [Van Rijsbergen|,

11



1.1. Supervised learning

Table 1.1: Confusion matriz in binary classification tasks. By comparing the actual labels YT =
{yi}iy with their corresponding predicted labels IA/'T = {yi}., we can define four quantities
called TP, FN, FP and TN that count the number of example in each of the four possible cases
such that TP+ FN+ FP+ TN =n.

Predicted positives 4y = +1  Predicted Negatives j = —1

Positive examples y = +1 True Positives (TP) False Negatives (FN)
Negative examples y = —1 False Positives (FP) True Negatives (TN)

1974] defined as
(1 + B%)precision x recall
(B%precision) + recall

FpB-measure =
where 8 > 1 gives more weight to the recall and 0 < 8 < 1 gives more weight to the precision.
Note that g = 1 gives an equal weight to both quantitie and leads to the well known F1-measure:

2 X precision X recall
Fl-measure =

precision + recall

Another performance measure taking into account the imbalance in the data is the Area
under the ROC Curve (AUC). It is based on the recall and on the false positive rate defined as

FP

false positive rate = FPLTN

Note that unlike the previous performance measures that are computed using only Y7 and lA"T,
the AUC requires to be computed with Y7 and a set of different predictions for different values
of a threshold 7 € £ defined as f’z ={+11F h(x;) > 7 OTHERWISE—1Vi € {1,...,n}}. The
AUC is then computed as the area under the ROC curve defined for different values of 7 and

ST
associated predictions Y as f(false positive rate) = recall.

1.1.3 Loss functions

To guide the search for the parameters a inducing a model h, € H having a good performance
measure, machine learning algorithms resort to loss functions ¢ : H x Z2 — R, that measure
how much wrong a model is at predicting the value of a labeled example z € Z. In the case
of binary classification with £ = R, the loss function that is usually minimized is called the

zero-one loss defined as
((h,z) = [sign(h(zx)) # y] .

Minimizing the zero-one loss is equivalent to maximizing the accuracy. However, like the other
performance measures introduced in the previous section, this loss is NP-hard to optimize.
Instead, surrogate loss functions of the zero-one loss that are both convex and differentiable can

be used. For example, the exponential loss defined as follows

U(h,z) = exp ( - yh(w)),

12
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4
3"~,.
< 27

1 ..3,.

0 - *

-2 —1 0 1 2
yh(x)

= Zero-one loss Exponential loss = Hinge loss

Figure 1.2: Values of the zero-one loss and two of its surrogates for an example z = (x,y) and

a model h in function of the prediction h(x) € R multiplied by y € {—1,+1}.

is often used in boosting [Freund and Schapire, [1996] and it takes into account the disagreement

between the prediction h(x) and the actual label y. We can also cite the hinge loss defined as

U(h,2) =[1 - yh()]+
=max (0,1 — yh(z)),

often used with Support Vector Machines (SVM) |[Vapnik, [1995] and which penalizes predictions
of h(x) having a different sign than y or having a confidence smaller than 1. We show the
behavior of these three losses in Figure [1.2

Finally, we mention the least square loss defined as follows:

Uh,z) = (y - h(z))?,

often used for regression tasks and in particular in gradient boosting [Friedman, [2001] and
penalizes predictions h(x) far from the label y € R.
Computing a loss over all the distribution D leads to the true risk R(h) of a model and is

defined as the following expected value:

R(h) = E ((hz).

Given a loss ¢, even if the goal is to select the model h* € H leading to the smallest true risk,
in general we cannot find A* based only on the quantity R(h) because we cannot compute it as
D is unknown. What is done in practice is rather to minimize the empirical risk ]?E(h) defined

for a training set S as the empirical mean of the loss:

R() = 3" bl ).
i=1
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1.1. Supervised learning

Minimizing the empirical risk might be insufficient to obtain a good model, especially when
the number of training example is small. For example, a trivial model h that would memorize
all the training examples would have ﬁ(h) = 0 while being potentially wrong on many unseen
examples. This phenomenon is called over-fitting and it can be avoided in practice by learning
the parameters a of a model h that minimize a trade-off between the empirical risk and a
regularization term on a:

argmin R(ha) + AReg(a), (1.1)

a
where Reg(a) > 0 becomes larger when the complexity of the model h, increases, i.e., when
the model tends to over-fit. The aim of the regularization is to prevent to obtain too complex
models by imposing constraints on the parameters learned. In this case, the impact of the
regularization on the solution is controlled by a hyper-parameter A > 0. A value of A too close
to 0 may lead to a model that tends to over-fit, while a too large value of A may lead to a model
that under-fits, i.e., that has a large empirical risk. In general, it is not appropriate to learn the
weight of the regularization at the same time as the model parameters a to minimize Equation
because doing so would always yield A = 0 as best minimizer. Instead, the weight of the

regularization can be tuned in a different learning step described in the following.

1.1.4 Parameter tuning

If a model h is trained with regularization to reduce its complexity, a hyper-parameter is used
to control the trade-off between the capacity of h to fit the training data and the complexity of
h which is related to its generalization capacity. A possibility to tune A is (i) to train several
models from S but for different values of the hyper-parameter, and then (ii) to select the model
and the corresponding A having the more accurate predictions on 7. However, T is usually
kept aside to evaluate the model when all parameters are learned, simulating how it performs
on examples never seen before. Instead, this hyper-parameter can be tuned through a process
called cross-validation using only S.

The idea of cross-validation depicted in Figure is first to partition .S into a number of
disjoint subsets called folds. Then for each fold, a model is trained on the union of the remaining
subsets and used to compute a performance measure describing how correct its predictions on
this fold are. Finally, the hyper-parameter leading to the best performance measure averaged
over the folds can be selected to retrain the model on the entire set S. This model can latter
be used to compute the same performance measure on 7', giving an estimate of the true risk.

Note that with more than one hyper-parameter, each having its own set of possible values,
it may be necessary to perform a grid-search during the cross-validation because changing the
value of a hyper-parameter may change the best value of another. The grid-search consists in
repeatedly learning and evaluating the model with cross-validation for every possible combina-
tion of hyper-parameters/values. This becomes rapidly expensive in computation time when
increasing the number of hyper-parameters and their numbers of possible values, especially

when the model requires itself a large amount of training time. Even so, the cross-validation
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Figure 1.3: Illustration of the cross-validation process. The first plot in the first row shows a
dataset divided into a training and a test set. The second plot in the first row shows the first
cross-validation step consisting in partitioning S in subsets called folds, here in 5. Then in
the second row, for each fold, a model is trained on the assembled remaining folds and used to
compute a performance measure describing how correct its predictions on this fold are. Finally

the performance averaged over the folds can be used as a parameter tuning criterion.

step is useful in practice for methods having few hyper-parameters to tune.

1.1.5 Generalization guarantees

We described in the previous sections how supervised models can be trained and evaluated
using different set of examples drawn according to the same unknown distribution D. However,
the quality of the evaluation is limited due to the fact that both S and T are finite. Ideally,
we would like to give guarantees that the performance on the training set will be close to the
performances on all the possible examples drawn according to D. During the last decades,
several theories [Bartlett and Mendelson) 2002, Bousquet and Elisseeff] [2002} [McAllester} 1999,
Valiant|, 1984] [Vapnik and Chervonenkis, 1971] have been developed to analyze under which
conditions these quantities are close based on the widely used Probably Approximately Correct
framework [Valiant} [1984]. This can be done by upper-bounding by a value € > 0 the deviation
between the empirical risk and the true risk with a probability at least 1 —§ with ¢ € [0, 1] over

the random draw of m examples according to D:

Sme<|§(h) — R(h)| < e) >1-9,
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1.1. Supervised learning

or in a less restrictive way

B <R(h) < R(h) + e) >1-6.

Whatever the theoretical framework, the bounds typically behave as follows: (i) the more
confident we are (i.e.,  tends to 0), the looser the bound (i.e., € tends to +oo) and (i) the
bound becomes tighter (e tends to 0) when m the number of training examples increases.

We now specifically present two theories: the uniform stability framework [Bousquet and
Elisseeff] |2002] which we use to derive guarantees for our contribution in Chapter [2, and the

PAC-Bayesian theory [McAllester) 1999| that motivates our contribution in Chapter

Uniform Stability The uniform stability framework [Bousquet and Elisseefl], 2002] allows
one to derive generalization bounds for learning algorithms taking the form of a minimization
trade-off between a convex loss function and a regularization. The bounds derived through this
framework have the advantage to take into consideration properties of the learning algorithm
such has its hyper-parameters, its regularization and its loss function. This framework can be

used to derive bounds for algorithms that have the following property called uniform stability.

Definition 1 (|Bousquet and Elisseeff] 2002| definition 6). Given a distribution D, a learning
algorithm has uniform stability § > 0 with respect to a loss £ if VS ~ D™ and Vi € {1,...,m}
the following holds

sup ‘K(h, z) — E(hi,z)‘ <pB
zeS

where h is the model learned with the algorithm from S, and h' is the model learned with the

algorithm from S*, the set obtained by replacing the it" example in S by another also i.i.d. from
D.

This property tells us that the deviation of the loss on the training examples between h and
h' is upper bounded by a value 3. The intuition is that learning a second model A’ after a small
modification of the training set gives almost the same model as h, where the difference between
the two models is quantified by . This value takes into account the regularization weight of
the algorithm and the number of examples in the training set, where a larger regularization
hyper-parameter and a larger number of examples allow to obtain a smaller 5. And the smaller

B, the more precise the resulting bounds thanks to the following theorem:

Theorem 1 (|Bousquet and Elisseeff] 2002] Th. 12). Consider a learning algorithm having
stability B with respect to a loss € such that VS ~ D™ and Vz € S then 0 < £(h,z) < M where
h is the model learned from S. Then for any m > 1 with a probability at least 1 — § over the

random choice of S ~ D™, we have the following bound on the true risk R(h):

In(1/9)
2m

R(h) < R(h) + 26 + <4mﬁ + M))
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Chapter 1. Background

Unlike Vapnik-Chervonenkis dimension-based bounds [Vapnik and Chervonenkis, |1971|, the
uniform stability framework allows us to derive guarantees even for family of hypotheses of
infinite VC-dimension, by taking into account the properties of the algorithm. We will make
use of this setting in Chapter [2|to derive guarantees on our metric learning algorithm devoted

to address imbalanced learning problems.

PAC-Bayesian theory This theory [McAllester, 1999, Shawe-Taylor and Williamson, (1997
allows one to derive generalization bounds for models defined as weighted majority votes over a
family of models H. To do so, two weighting distributions over ‘H are considered. The first one
called prior distribution, noted p, gives a prior knowledge (before observing a training set) on
which of the models in H are better than the others to handle the task (it can be the uniform
distribution is the absence of prior knowledge). The second one called posterior distribution,
noted ¢, is learned from a training set of examples, and is then used to define the following
majority vote model for binary classification:

B,(z) = sign (hIth(ac)).

Usually, ¢ is learned to minimize an upper bound on the true risk R(B,) with respect to the
zero-one loss. Directly minimizing R(By) is difficult. Instead, one can obtain an indirect bound

on R(By) by upper-bounding the so-called risk of the Gibbs classifier, noted

Indeed, one can relate the two with the following inequality (see Langford and Shawe-Taylor
[2003] Lemma 4.1):

R(B,) <2R(Gy).

Then, one can use the following generalization bound on R(G;) derived from McAllester|[1999):

P (Vq on H, R(G,) < E(Gq) + \/

(QHP) n =5 > >1-4,
S~Dm

2m

where KL(q||p) = hIqun % is the Kullback-Leibler divergence between the two distributions ¢
and p. There exists numerous other types of PAC-Bayesian bounds, but this one is interesting
as it allows one (see|Germain et al.|[2009]) to compute for any family of classifiers H, any prior
p any regularization parameter S > 0 to tune, the minimizer ¢* of the bound with the following

closed-form equation

1

¢'(h) = p(h) exp (~BR(M))

where Z is a normalization constant. This bound and its minimizer are useful for us because
we base our contribution in Chapter |3 on a specific PAC-Bayesian analysis inspired from this

setting.
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Figure 1.4: Decision rule for the k-Nearest Neighbor algorithm. We display for one test point
(the black cross in the figure) how its predicted color (red or blue) is selected among colored
dashed circles around the point enclosing a varying number of neighbors k € {1,3,5,7}. The
closest training points from the test point are numbered from 1 (closest) to 7 with respect to
the Fuclidean distance. We see that with k € {1,3} the test point is classified as red, and with
k € {5,7} the test point is classified as blue.

1.2 Classification algorithms

In this section, we present five classification algorithms that will be used throughout the rest

of this thesis.

1.2.1 k-Nearest Neighbor (kINN)

This algorithm [Cover and Hart, [1967] does not involve the usual first step devoted to learning
a set of learnable parameters a as it has no parameter to learn. That is why kNN belongs to
the so-called lazy algorithms. Instead, this algorithm directly produces predictions based on
a training set S, a distance function and an integer k. Predicting the class of an example x
requires to compute the distance between x and all the m examples in S and to retain the k
closest examples in S. The algorithm then returns as prediction for & the most represented
class among these k nearest neighbors. We show in Figure how a class prediction is made
in function of an increasing value of k. Figure depicts decision boundaries produced for
different values of k. Note that we can see k as a hyper-parameter to tune which regularizes in
some way the classifier. Indeed, a small value tends to over-fit the data (the decision is made
very locally), while a large value tends to under-fit (the classifier tends to predict the majority
class).

To avoid having ties when selecting the most represented class, a possibility in binary
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Chapter 1. Background

® Training set S + Test set T'

Figure 1.5: Decision boundary for the k-Nearest Neighbor algorithm for different values of k. A
point falling in a red (resp. blue) area is classified as red (resp. blue). Here, by increasing k the

model tends to under-fit the data as some training example become incorrectly classified.

classification is to limit ourselves to odd values of k. When dealing with multi-class problems,
a solution is to give a weight to each neighbor inversely proportional to its
distance, and to choose the class having the largest sum of weights.

A key component of the kNN algorithm is the distance function used to compute the distance
between the examples. This distance can be learned with the help of metric learning algorithms
[Kulis, 2013] Bellet et al.l 2015] to build new distance functions more suited than the Euclidean

distance. Our contribution in Chapter [2]is based on this idea, and we will show how to learn

an effective metric in the presence of few positive examples.

1.2.2 Support Vector Machine (SVM)

SVM [Boser et all, [1992] [Cortes and Vapnikl [1995] is a learning algorithm that builds hyper-

planes that can be used to classify examples depending on which of the two sides they are with

the following rule:

h(x) = sign(w - « +b),

where the sign of (w -  + b) indicates which side x is from the hyper-plane, and the absolute
value indicates how far it is. The parameters w and b define the hyper-plane and are learned

to optimize a regularization/risk trade-off defined as follows:
1 4 .
ggg W w—i—C'i_ZIQ (1.2)
subject to  y;(w-x; +b) > 1—¢;,
& >0, Vie{l,...,m},
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Figure 1.6: SVM model for different values of the parameter C € {0.05,1,20}. A walue of C
close to O privileges models with a large margin but with the downside of having more examples
violating the constraint of being on the correct side of the hyper-plane at a distance larger than
the margin. A large value of C concentrates on minimizing the number of violated constraints
and has for effect to decrease the safety margin. The blue (resp. red) examples are assigned the
label —1 (resp. +1), and the SVM model returns predictions in R (in [—4,3.7] with C = 20)

where a negative (resp. positive) prediction corresponds to the blue (resp. red) class.

where &; are slack variables and where (i) the examples are constrained to be on the correct
side of the hyper-plane (risk minimization) with the soft constraint y;(w - x; + b) > 1 —¢&;
with Y ", & as small as possible, and (%) the examples are constrained to have a distance
to the hyper-plane greater than a value called margin that is maximized (regularization) by
minimizing the norm of w. As shown in Figure [1.6] a large value of C > 0 tends to over-fit
by making the soft constraint hard, while a C close to 0 allows to produce more regularized
models with a large margin.

Problem is often called primal problem. In practice, we rather resort to the optimization
of its dual counterpart for computational reasons and because the dual allows to use kernel

functions. The dual problem is defined as follows:

m m
5 E yiyjoogk wi,wj)—g a;

subject to Zyiai =0,
i=1

and 0<a; <C, Vie{l,...,m},

mm fla

l\.')\}—t

where a can be learned efficiently by updating iteratively only two carefully selected values in

the vector (to enforce the constraints) until convergence [Fan et al., 2005].

The function k : R? x R — R is called a kernel, and it measures a similarity between its

two arguments. Using this formulation, the decision function is defined as

= sign (Z yioik wu + b)
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Figure 1.7: SVM model for a linear and an RBF kernel. The linear kernel allows to build a

linear separator. The RBF kernel enables to learn a linear separator in a higher dimensional

representation space which induces a non linear separator in the initial space.

where by plugging the linear kernel defined as the scalar product between two points

k(z,2')=x ',

we obtain the same formulation as the one from the primal problem with

m
w = Z Y; OG5
i=1
Using this formulation, b is not learned but is deduced from a (see [Chang and Lin [2011]) as

B Y io<as<c YiVif(@)
il0 < a; < C} 7

where V; f(a) is the ith component of the partial derivative of f with respect to a.

The use of kernel functions different from the linear kernel is interesting because it allows
to compare points in a different representation space without requiring to compute explicitely
the (costly) projection of the points in that space . This cheap computation of
the scalar product through a kernel function is known as “kernel trick”. For example, the RBF
kernel

k(z,@') = exp(—/z — 2'|),

induces a representation space with an infinite number of dimensions, with v > 0 a parameter
to tune. For this kernel, the “kernel trick” is useful as otherwise it would be impossible to first
project the points in the space before computing their scalar products. Instead, the use of the
formula of the RBF kernel is cheap to compute and is equivalent to the scalar product between
the points in the infinite dimensional space. Furthermore, when using the kernel function to
compare the points in the dual formulation of the SVM, this allows to build a linear separator
in the representation space induced by the kernel. The advantage is that if the examples are not

linearly separable in their original representation, they may be separable in the space induced
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1.2. Classification algorithms

by the kernel. This behavior is shown in Figure where a linear separator in the original
space fails to separate the points using the linear kernel. On the other hand, with the RBF
kernel, the linear separator in the space induced by the kernel becomes a non-linear separator

in the original space that successfully separates the points.

1.2.3 Decision tree

In machine learning, decision trees are models made of a set of nodes connected between each
other through parent/child connections. These trees usually starts at a unique node called root
that has no parent, and ends at different nodes called leaves that have no child. In classification,
each leaf corresponds to a single class and all examples falling in a leaf are predicted as belonging
to its corresponding class. In regression, a leaf gives as output the mean target value of its
containing training examples. Current implementations of decision trees are often based on the
work of Breiman et al.| [1984] where the trees are binary, meaning that each node except the
leaves has two child, and that an example is assigned to the left or right child depending if a
test on a single feature of this example is verified or not.

The complexity of the trees can be controlled by its depth which is the maximum number of
nodes that an example can pass through before obtaining its prediction. Intuitively, having no
limit on the depth can lead to over-fit the data as one branch could be built to predict exactly
the label of each training example. On the other hand, having a depth near 1 may produce a
model that under-fits the data.

The goal when learning a tree is to find at each node the best feature and the best test on
the value of this feature to split the training examples located in that node. For classification,

this notion of “best” is quantified by a criterion called the Gini impurity:
C
GI(N) =3 pi(l —pi),
i=1

where p; is the proportion of examples of the ith class in the node N. In binary classification,
GI € [0,0.5] where GI = 0 indicates that there are examples of only one class in the node, and
GI = 0.5 indicates that there are as many examples of both classes in the node. Decision tree
algorithms [Breiman et al., [1984] aim to find a feature and a threshold that lead to a decrease

of the Gini impurity (see Figure for an example).

1.2.4 Neural networks

In |[Rosenblatt| [1958], a simple neural network, called perceptron, is introduced as follows
h(z) = g(w - = +b),

where g is called an activation function and the goal is to learn the vector w and the bias b.
It is worth noting that it takes a similar form as that of a linear SVM where g = sign. A

common type of neural networks is the multi-layer perceptron built upon the aggregation of
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several perceptrons organized in layers. For example, a basic 3-layer perceptron can be built as

hi(e) = g1(wi - @ +by)
h3(x) = g3 | ws - ")
3() 93< ’ (hz(w)zgz(w2'w+b2>) " 3)

It has three layers (i) the input layer composed of d neurons which is the number of features

follows

in the input space, (i) a hidden layer composed of two neurons defined by the two perceptrons
hi and he and (7i) the output layer composed of one neuron defined by the last perceptron hs.

Most neural networks can be seen as multi-layer perceptrons where the differences between
them can be: the number of hidden layers, the number of neurons in each layer, the activation
functions, the algorithm used to learn the parameters w and b of each perceptron...

There has been during the last years a large attention to deep neural networks |Goodfellow
et al., [2016] due to their excellent capability to learn from large set of examples. Current state-
of-the art deep neural networks are especially good among others to address computer visions
and natural language processing tasks.

An interesting characteristics of deep neural networks is that we can reuse a part of these
networks to handle a different task. This is especially convenient as training these models can
be very expensive in terms of computation time and hardware infrastructure. For example,
the pioneering work of [Krizhevsky et al|[2012] train a deep neural network using millions of
images to find if an object among 1000 classes of object is present in an image. This pre-trained
network can be re-used for a different task involving images, for example by using the network
as a feature extractor where the features are produced as the output of one of its hidden layers.
This strategy is exploited in Chapter [4] to quickly extract a set of features for images that are

used to evaluate our proposed method.

1.2.5 Boosting

The idea behind boosting [Schapire| [1990] is to use a machine learning algorithm to build
iteratively a set of models h and then to return as final predictor an aggregation of these
models. In binary classification, the final boosted model noted H takes the form of the following

weighted sum:
T
H(x) = sign (Z athat(w)> ,
t=1

where o is the weight given to the " model, and where T' is the number of models trained,
i.e., the number of iterations of the algorithm. The individual models are usually trained to be
complementary to the others.

In the seminal work of Schapire and Singer|[1999], the algorithm Adaboost resorts to the min-
imization of the exponential loss by gradient descent. At each iteration, the distribution of the
training examples is updated, giving more weight to the examples that have been miss-classified
by the previous classifiers. One advantage of Adaboost is that, under a weak assumption over

the base classifiers, the final model comes with strong generalization guarantees.
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In the gradient boosting framework proposed by Friedman| [2001], at each iteration, a re-
gression model is trained to predict the residuals of the examples defined as minus the partial
derivative of any empirical loss with respect to the current ensemble. The goal is to correct
step by step the errors made by the previous ensemble.

We show in Figure the behavior of Adaboost |[Schapire and Singer), [1999| and Gradient
Boosting [Friedman) [2001] where we plug decision trees of depth 1 as base models. We can
see at the first iteration that a single tree of depth 1 fails to separate well the data. However,
when increasing the number of trees, we quickly obtain a model that correctly predicts all the

training examples.

1.3 Methodological building blocks

We investigate in this thesis how to obtain relevant representations of the data in the difficult
setting where only a few examples of interest are available to learn from. The goal is that a model
trained with the new representation will present better performances than a model learned upon
the original representation. In the following, we recall three frameworks used as building blocks
in our contributions. Metric learning (see the two surveys: [Bellet et al., 2015, Kulis| [2013]),
is the basis of Chapter [2] where we optimize a metric inducing a new representation space that
tends to be more effective than state-of-the-art metrics in the presence of a class imbalance.
Kernel random Fourier features [Rahimi and Recht, [2008| are used in Chapter |3| to learn new
features helping to generalize with few labeled examples. Finally the optimal transportation
theory [Villani, 2008| is exploited in Chapter 4| to reduce the discrepancy between the features

of a target domain where no labels are available, and the features of a source labeled set.

1.3.1 Metric learning

Metric learning is a sub-field of representation learning that consists in designing a pairwise
function able to capture the dis/similarity between two data points. This is a key issue in
machine learning as such metrics are at the core of many algorithms, like kNN, SVMs...

Many metric learning algorithms are of the family of methods that construct a generalized

version of the Mahalanobis distance [Mahalanobis, |1936] defined as

dv(z, ') = \/(ar: —z')TM(x — ')

where M € R%*? is symmetric and positive semi-definite (PSD), i4.e., for all non-null vector
x € R? then
' Mz > 0.

This distance allows to retrieve the Fuclidean distance by setting M as the identity matrix of
dimension d. Because M is PSD, another interesting property is that there exists a matrix
L € R4 where r is the rank of M such that

M=L'L.
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Thus, the Mahalanobis distance between two points & and ' is equal to their Euclidean distance

after having projected linearly  and @’ in the r-dimensional space, i.e.,

dyv(z, x') :\/(az —a')TM(x — x')

:\/(Lw —La/)T(Lz — La’) .

The goal of metric learning algorithms is then to construct the matrix M or L that induces
a distance measure suited for a given task. Most metric learning algorithms optimize a loss
function which aims at bringing closer examples of the same label while pushing apart examples
of different labels. In practice, metric learning is usually performed with pairwise constraints—
two data points x and &’ should be dis/similar [Davis et al., 2007, [Lu et al., 2013, Weinberger
and Saul, [2009| Xiang et al.| 2008, Xing et al., 2003, |Zadeh et al., 2016]—or relative constraints—
a data point @ should be more similar to another «’ than to a third one " |Lee et al., 2008,
Schultz and Joachims, 2004, [Weinberger and Saul, 2009, |Zheng et al., 2011].

We will show in Chapter 2] that when learning with few labeled examples of a class but a
large amount of another class, existing metric learning algorithms tend to favor the majority
class. To face this issue, we will propose a new metric learning algorithm aiming to be as
good on both classes of examples. We will exploit the uniform stability framework to derive

guarantees on the learned metric M.

1.3.2 Random Fourier features (RFF)

The RFF framework introduced by |[Rahimi and Recht| [2008] allows to approximate kernel
functions in order to speed up the learning of algorithms using such kernels. A kernel can be
defined as a function

k:RYx R 5 R,

that takes as input two examples and returns a measure of similarity between them. This
framework allows to approximate the set of kernels that are shift-invariant, meaning by abuse

of notation that
k(z,z') = k(0,2 —2') = k(x — ') = k(§) with d=x -

When a kernel is shift-invariant, it is possible to define a distribution p(w) as the Fourier
transform of the kernel [Rudin, [1962]:

p(w) = (er)d /R KB)e 4 (13)

In this context, Rahimi and Recht| [2008] show that the kernel can be rewritten as

k(x—x') = E cos (w- (z—a))

w~p

| K
= Zcos(wj (z—2)),
j=1
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where the larger the number of random features K, the more accurate the resulting approxi-
mation of the kernel. Given K vectors {w; }JKzl ~ p, they further propose to approximate the

kernel as

k(x,z') ~ z(x) - 2(z'),

where z is a mapping in the random feature space defined as

z(x) = \/E[cos(wl - x),...,co8(wg - x),sin(w; - x),...,sin(wg - x)].

The interest of this framework is to project the points in the random feature space, and
then to train a linear model in this space. Doing so, we benefit both from the non-linearity
induced by the kernel approximated, and the fast training time of the linear model. However,
if the considered kernel is not suited for the task at hand, its approximated version will not be
more suited because it only tends to give the same value as the kernel. In this sense, the RFF
method only allows to speed up the learning time of a kernel algorithm without improving its
effectiveness to handle a task. To obtain a new kernel suited for a given task, several works
have extended this technique by allowing one to adapt the RFF approximation directly from the
labeled training data [Agrawal et all [2019] Letarte et al.,2019| |Sinha and Duchi|, |2016]. This is
also the focus of our contribution in Chapter [3| where we build at the same time a representation
of the data with RFF and a classification model with gradient boosting to obtain a model that

generalizes well in the presence of few labeled examples.

1.3.3 Optimal transport

The theory of optimal transport has been introduced by Monge|[1781] and was recently revisited
by [Villani [2008]. In essence, this theory gives a mathematically founded tool that allows to
align arbitrary probability distributions in an optimal way.

In the discrete case, it can be formalized as follows. Let @f{ = % Yoy 5mf and 'ZA?ﬁ =
% Yoo T be two empirical probability measures defined as uniformly weighted sums of Diracs
with mass at locations defined on two sets S = (X*,Y®) with X* ¢ R™*? and T = (X7, Y7)
with X7 e R"*? drawn according to arbitrary probability distributions DS and DT. The
Monge-Kantorovich problem consists in finding a probabilistic coupling « defined as a joint
probability distribution over X® x X7 that minimizes the cost of transport w.r.t. a metric
c: X9 x AT SRy

*

v* = argmin (v,C)p, (1.4)
~el(DY, D)

~S AT ~S ~T

where (-,-)p is the Frobenius dot product, I(Dy,Dy) = {y € R7*"|v1 = Dy,v'1 = D}
is a set of doubly stochastic matrices and C' is a dissimilarity matrix, 7.e., for iL';g e X° and
acf e X7, we have Cij = c(acf , a:jT) which defines the energy needed to move a probability mass
from a:ZS to a:JT This problem admits one or several optimal solutions v* and defines a metric

26



Chapter 1. Background

on the space of probability measures (called the Wasserstein distance) as follows:

W(Dy.Dy)= min_ (v.C)r. (1.5)
Yell(Dx,Dx)
We supply an example showing the computation of v* on a toy example in Figure [L.10
Despite its elegance and simplicity, the formulation of optimal transport given in Equation
(1.4) (abbreviated OT) is a Linear Programming problem that does not scale well because of
its computational complexity.

In order to tackle this issue, Cuturi [2013] proposed to add the entropic regularization of

to the Equation (1.4) leading to the following optimization problem:

7= argmin (3,C)p — 1 E(y). (1.6)
Yel(Dy, D)
where E(vy) = — Zij 7ij log vij. The regularized optimal transport (abbreviated OT2) allows
the source instances to be transported more or less uniformly to the target instances based
on a hyper-parameter A and can be optimized efficiently with the linear time Sinkhorn-Knopp
algorithm [Knight|, 2008].

Based on the solutions given by Equations and , we propose in Chapter 4| in the
unsupervised domain adaptation context where no labeled examples are available in a target
domain, to measure how similar the features of a source domain with labeled examples are
to the features of the target domain. These similarities can then be used to build a better
classification model on the target domain by discarding the most dissimilar features between

the two domains.
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delth 1 delth =2

-1 2

delth 4 dclth 5

® Trammg set S + Test set T

y<-0.033
gini=0.5

samples = 30
value =[15, 15]

Figure 1.8: Partition of the space different depths of the decision tree (top) and the decision
tree with depth 4 (bottom). Larger depths lead to models that better fit the training set, but that

may behave poorly on the test examples.
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Iteration 1 Iteration 5 Iteration 10

Adaboost

Gradient Boosting

-0.5 -1.2

-1.7

Figure 1.9: Adaboost model JSchapire and Singer{ |1999]/ and Gradient Boosting model
with decision trees of depth 1 as base learner using 1, 5 and 10 iterations. Note that
the white areas are where the predictions are equal to 0 which are considered a positive value
(i.e., the red class).

n
5 0 4 4
d
0 1 5 1 R
d AT
Input: X" Input: D
N p x
1 1 1
5 3 9 129 | § 5 3 0 0 6 6
1 1 1
m 4 0 1 17 | 25 1 3 1 0 0 15
1 1 1
1 3 25 5 13 13 3 0 3 33 O
Input: X*° Input: C Input: ff)i Output: ~*

Figure 1.10: Ezample of an optimal transport problem between two sets of exzamples X° and
~S5 ~T
X7 where C is the squared Euclidean distance and both Dy and Dy are uniform empirical

probability measures.
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Chapter 2

Metric Learning from Imbalanced Data

with Generalization Guarantees

This chapter is based on the following publications

Léo Gautheron, Emilie Morvant, Amaury Habrard and Marc Sebban. Metric Learning from
Imbalanced Data with Generalization Guarantees. In Pattern Recognition Letters, volume 133,
pages 298-304. 2020 |Gautheron et al., [2020c|.

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Metric Learning from
Imbalanced Data. In IEEE International Conference on Tools with Artificial Intelligence (I1C-
TAI), 2019, Portland, United States [Gautheron et al., 2019b|.

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Apprentissage de métrique
pour la classification supervisée de données déséquilibrées. In Conférence sur

I’Apprentissage automatique (CAp), 2018, Rouen, France [Gautheron et al., 2018a].

Abstract

Since many machine learning algorithms require a distance metric to capture dis/simila-
rities between data points, metric learning has received much attention during the past two
decades. Surprisingly, very few methods have focused on learning a metric in an imbalanced
scenario where the number of positive examples is much smaller than the negatives, and
even fewer derived theoretical guarantees in this setting. Here, we address this difficult task
and design a new Mahalanobis metric learning algorithm (IML) which deals with class
imbalance. We further prove a generalization bound involving the proportion of positive
examples using the uniform stability framework. The empirical study performed on a wide

range of datasets shows the efficiency of IML.
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2.1 Introduction and related work

In this chapter, we focus on the family of metric learning algorithms (see the two surveys: [Bellet
et al., 2015, Kulis, 2013|) that construct a generalized version of the Mahalanobis distance in
the presence of a class of rare examples and another class containing most of the training data.

Two famous representatives of Mahalanobis distance learning are LMINN (Large Mar-
gin Nearest Neighbor [Weinberger and Saul, 2009]) and ITML (Information-Theoretic Metric
Learning [Davis et al., 2007]), which are both designed to improve the accuracy in the latent
space of the kNN classification rule recalled in Section [I.2.1]

The idea behind LMNN is to learn the matrix M that parametrizes the Mahalanobis
distance and satisfies a set of similar constraints S, and a set of relative constraints R, defined

as

S = {(xi,x;) | yi = y; and x; belongs to the k neighbors of x;},
and R = {(z, xj,x) | (x5, x;) € S and y; # yi} -

Then, the metric is learned by optimizing the following problem:

argmin (1 — p) Z dip (i, ;) +MZ§ijk

M=0 (zi,25)€S 1,9,k

s.t. d%,l(acl,xk) — d%/[(a:i,:cj) >1-— ‘fijk V(a:i,a:j,:ck) eR.

where M > 0 denotes the constraint that M should be PSD, as introduced in Section[I.3.1} The
idea of this method is to optimize a trade-off (controlled by p € [0, 1]) between a minimization
of the distance between similar pairs (x;, ;), and under the constraint that any example
with a different label is farther from x; than from ;. In practice, these constraints are relaxed
through the use of slack variables &;;.

The ITML algorithm also considers two randomly selected sets of similar and dissimilar
pairs noted & and D, and optimizes M by minimizing the following problem:

argmin D;y(M, M)
M>0
s.t. dag(zi, ) <u Y(mi,x;) €S

d%/[(mivmj) > V(whmj) €D,

where u and v are safety margin parameters. The goal is to learn a matrix M sufficiently close
to a prior matrix My under the LogDet divergence D;; and the constraints that the examples
in § must be closer than a value u and that the instances in D must be significantly far away
with a distance larger than v where v > w.

Without being exhaustive, another kind of Mahalanobis distance learning algorithm is given
with GMML (Geometric Mean Metric Learning) [Zadeh et al., 2016| that also considers two
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w7 GMML TML SN LMNN
Accuracy F1l-measure
100
90 1 .
80 - .
70+ 1
60 - 1
50 - 1
40 - .
30+ .
20 - .
101 .

50% 40% 30% 20% 10% 50% 40% 30% 20% 10%
Percentage of positive examples Percentage of positive examples

Figure 2.1: Illustration on the SPECTFHEART dataset of the negative impact of classic metric
learning algorithms when facing an increasing imbalance in the dataset. On the left, as the pro-
portion of minority examples decreases (the positive class), the 3NN algorithm with the learned
metrics tends to classify all the examples as members of the majority class, with an accuracy
close to 100%. On the right, using the F1-measure (see its definition given in Section ,

we see that the learned metrics plugged in a kNN actually miss many positives.

random sets of pairs S and D and whose objective function is:

arg min Z dm(z;, i) + Z dyi-1(zq, ).
Mz0 (z,x5)€S (x4,x;)€D

To find the matrix M, they consider the two following matrices:

S= > (@i—z)(xi—=z)’

(z,25)ES

D= Y (zi—zj)(@i—x))
(mi,x;)€D
The goal is to find M, inside the set of PSD matrices, along the geodesic curve between D and
S~! parameterized by t € [0,1] that controls if it is closer to D or §~!. The main advantage
of this method is that M can be computed explicitly from S~ and D and does not require a
costly optimization process as for LMINN and ITML.

In light of these learning procedures, it is worth noticing that the loss functions optimized
in LMINN, ITML and GMML (and in most pairwise metric learning methods) tend to favor
the majority class as there is no distinction between the constraints involving examples of
the majority class and the constraints on the minority class. This strategy is thus not well
suited when dealing with imbalanced datasets. An illustration of this phenomenon on the
SPECTFHEART dataset from the UCIE| repository is shown in Figure We observe that

decreasing the proportion of minority examples tends to generate a metric which classifies (with

"https://archive.ics.uci.edu/ml/datasets.html
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a kNN rule) all the examples as the majority class, thus leading to an accuracy close to 100%.
On the other hand, the Fl-measure [Van Rijsbergen) 1974], commonlyﬂ used in imbalanced
settings [Chandola et al., 2009, [Lopez et al., 2013|, decreases with the proportion of positives,

showing that the classifier missed many positives, usually considered as the examples of interest.

This problem of learning from imbalanced data has been widely tackled in the litera-
ture [Branco et al.| 2016| He and Garcial [2009]. Classic methods typically make use of over /under-
sampling techniques [Drummond and Holte, |2003| [Estabrooks et al.l 2004} Liu et al., 2008, Ag-
garwall 2013| or create synthetic examples in the neighborhood of the minority class—e.g., using
SMOTE-like strategies [Chawla et al. 2002, 2003, [Han et al.l 2005] or resorting to adversarial
techniques [Douzas and Bacao, [2018|. However, these methods may lead to over or under-fitting
and are often subject to an inability to generate enough diversity, especially in a highly imbal-
anced scenario. Other strategies aim at addressing imbalanced situations directly during the
learning process. They include cost-sensitive methods [Elkan, 2001, |Zadrozny et al., 2003] which
require prior knowledge on the miss-classification costs, the optimization of imbalance-aware
criteria |[Frery et al. 2017, |McFee and Lanckriet, |2010, |[Vogel et al., 2018| which are often non
convex, or ensemble methods based on bagging and boosting strategies [Galar et all [2011] that

can be computationally expensive.

Unlike the state of the art, we suggest in this chapter to address the problem of learning
from imbalanced data by optimizing a metric suited to scenarios where the positive data are
very scarce. As far as we know, very few methods were designed in this setting. [Feng et al.
[2018] propose to regularize a standard metric learning problem by using the KL-divergence
between the classes. Wang et al. [2018] propose IMLS that learns a classic metric and then
performs a sampling on the training data to account the imbalance. However, as we will see in
our experimental study, better performances can be achieved by resorting to a metric dedicated
specifically to deal with the imbalance of the application at hand. Deep metric learning methods
have also received attention by the community to address the problem of imbalanced data [Liu
et al., 2019, Wang et al.,[2019]. However these methods often require large training datasets, like
in visual tasks, a requirement which is not always fulfilled by the application at hand. Moreover,
it is worth noticing that none of the previous approaches come with theoretical guarantees, a
gap we will fill in this chapter. In order to implicitly control the rates of false positives and
false negatives, we propose a new algorithin, called IML for Imbalanced Metric Learning, which
accounts carefully the nature of the pairwise constraints (by decomposing them with respect
to the labels involved in the pairs) and weights their impact in the loss function so as to
account the imbalance. Beyond this algorithmic contribution, we further provide a theoretical
analysis of IML using the uniform stability framework [Bousquet and Elisseeff, 2002| presented
in Section We derive the first generalization bound which has the advantage to involve

the proportion of minority examples. This bound provides some insight into the way to tune

% As indicated in Section [1.1.2] the F1-measure is much more adapted to imbalanced scenarios since it does

not involve the true negatives but considers both the false positives and the false negatives.
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the weighting parameters to counterbalance the negative impact of imbalanced datasets.
Organization of the chapter. Section introduces the notations and the principle of
classical Mahalanobis metric learning. Section describes our algorithm IML which takes
the form of a simple regularized convex problem. Section is dedicated to the theoretical
analysis. We perform an experimental study of our approach in Section before concluding
in Section 2.6

2.2 Notations and setting

In this chapter, we deal with binary classification tasks and follow the same notations as in
Chapter We assume that the training set is defined as S = ST U S™, with ST the set
of positive examples and S~ the set of negative examples such that the number of positives
m*t =|ST| is smaller than the number of negatives m~ = |S™| (we say that +1 is the minority
class and —1 the majority one). We aim at constructing a Mahalanobis distance which induces
a new space in which a kNN classifier will work well on both classes.

Mahalanobis metric learning algorithms [Bellet et al., 2015, [Cao et al., 2016, Jin et al.l 2009

can usually be expressed as follows:

: 1 /
min FM) = W( %SQ (M, z,2") + AReg(M), (2.1)

where one wants to minimize the trade-off between a convex loss £ over all pairs of examples
and a regularization Reg under the PSD constraint M > 0.

The major drawback of this classical formulation is that the loss gives the same impor-
tance to any pair of labeled examples (z,2z’) whatever the labels y and y’. Intuitively, this is
not well suited to imbalanced scenarios where one wants to focus more on the minority class
(think, for example, about anomaly detection [Chandola et al., 2009]). Some metric learning
algorithms [Weinberger and Saul, 2009, Zadeh et al., 2016] allow to weight the role played by
the similar and dissimilar/relative constraints, but they do not directly take into account the
labels of the examples.

To tackle these drawbacks, we propose in the next section IML, a metric learning algorithm

able to deal with imbalanced data.

2.3 IML: Imbalanced Metric Learning

Our algorithm is built on the simple idea consisting in decomposing further the sets of similar
and dissimilar constraints based on the two labels involved in the constraints. Each set can then

be weighted differently during the optimization to reduce the negative effect of the imbalance.

Starting from Equation (2.1)), let us decompose the loss function £; we have for all (z,z’) € 22
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Similarity constraints Dissimilarity constraints

Figure 2.2: Illustration of the behavior of our loss £ defined in Equation (2.2]). On the left, the
similarity constraints (loss €1) aim at bringing examples of the same class at a distance less
than 1. On the right, the dissimilarity constraints (loss l2) aim at pushing away examples of

different classes at a distance larger than 1 plus a margin K.

and for all M € R4xd .

ali (M, z,z") if y=+1and ¢y = +1,
1—a)ty(M,z,z') ify=—1andy = -1,

(M. 2.7y = 70 ) iy Y (2.2)
bly(M, z,7') if y=+1and ¢y = —1,

(1-b)la(M,z,2") if y=—1and ¢y = +1,

with the two functions ¢; and fs defined as ¢1(M,z,2z') = [d3;(z,x') — 1]+ and lo(M, z,2') =

[1+r—d3;(x,x')]+ and where £ > 0 is a margin parameter.

We illustrate in Figure [2.2] the behavior of the two sub-losses ¢ and ¢5. The idea of ¢ is
to bring examples of the same class at a distance less than 1 while /5 aims to push far away

examples of different classes at a distance larger than 1 plus a margin .

Both hyper-parameters a and b take values in [0,1]. The parameter a controls the trade-
off between bringing closer the minority examples and bringing closer the majority examples.
While the second parameter b controls the trade-off between keeping far away the majority
examples from the neighborhood of minority ones, and keeping far away minority examples

from the neighborhood of majority ones.

In addition to inserting Equation into Equation , we need to set the regularization
term Reg(M). In order to avoid over-fitting, we propose to enforce M to be close to the identity
matrix I such as Reg(M) = [|[M —I||%, with || - || p the Frobenius norm. In other words, we aim
at learning a Mahalanobis metric which is close to the Euclidean distance while satisfying the

best the semantic constraints.
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All things considered, our IML algorithm takes the form of the following convex problem:

min F(M) = L ( Z al;(M,z,z') + Z (1-a)t1 (M, z,2') +
(

M>0 m2
z,2')ESim™T (z,2')€STm™

> ba(MzZ)+ Y <1—b>ez<M,z,z’>>+AHM—I|2F,

(z,2')€Dis™ (z,2")eDis™
(2.3)

where the four sets Sim™, Dis™, Dis™ and Sim™ are defined as subsets of S x S respectively as:
Sim™ C St x St, Dist C ST xS, DisT €S~ xSt and Sim™ C S~ x S™.

If we look more closely at the proposed Equation , when all pairs from S x S are
involved, Sim™ and Sim™ contain respectively mTm™ and m~m™ pairs while Dis™ and Dis™
are composed respectively of m*m~™ and m~m™* pairs. This means that the pairs in Dis™
and Dis™ are symmetric and these two sets might be merged. However, metric learning rarely
considers all the possible pairs as it becomes quite inefficient in the presence of a large number
of examples. Possible strategies to select the pairs include a random selection [Davis et al.)
2007, Xiang et al. 2008, Xing et al., 2003, Zadeh et all [2016] or a selection based on the
nearest neighbors rule [Lu et all 2013, Weinberger and Saul, 2009]. For this reason, it might
make sense to separate the two sets Dist and Dis™ and allows to weight them differently as (i)
they may not consider the same subsets of pairs, and (%) may not capture the same geometric
information. Another interpretation of such a decomposition in an imbalanced learning setting
is the following: if z’ is selected as belonging to the neighborhood of z, the minimization of the
four terms of Equation can be seen as a nice way to implicitly optimize with a ENN rule
the true positive, false negative, false positive and true negative rates respectively.

Among the two strategies to select the pairs, the selection based on the nearest neighbors is
more adapted to an imbalanced scenario as it considers k pairs for each training example from
both the majority and minority classes. On the other hand, the random strategy just picks at
random two examples to create a pair. Then with imbalanced data, it might be possible not to
have any similar pair between two minority examples, thus focusing on the majority class. We
will see experimentally in Section that, as expected, the selection of the pairs based on the
nearest neighbors rule performs better.

The fundamental difference between our formulation and classic metric learning formulations
is that we separate in our loss the set of similar pairs S into two sets Sim™ and Sim™, and the
set of dissimilar pairs D into Dist and Dis~. In a classic metric learning formulation, these
four sets are all treated equally by giving them a weight of # However in the presence of
imbalanced data, the number of pairs in Sim™ and Dis™ which is in O(m™) is much smaller than
in the sets Sim~ and Dis~ where the number of pairs is in O(m ™). Intuitively, in the presence
of imbalanced data, the terms in O(m™) will have a smaller impact on the loss function, thus,
we aim at re-weighting these four sets to account the imbalance. We adopt a simple strategy

consisting in giving a weight to each set that depends on its number of elements. We choose
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2.3. IML: Imbalanced Metric Learning

to give to the two sets Sim™ and Dist a weight a = b = T and to the two sets Sim~ and
Dis™ a weight "% This strategy allows us to give the same importance to the four terms
in the loss function, no matter how imbalanced the data is. We will see experimentally that
using this re-weighting instead of the weight m% greatly increases the performances when facing

increasingly imbalanced data.

50% of positives 30% of positives 10% of positives 5% of positives 1% of positives
¢ ® ® o o
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I Uniform constraints weighting I Proposed constraints weighting

Figure 2.3: Description of the two strategies of our IML algorithm to deal with the imbalance
compared to classical metric learning methods. The top row of plots shows a toy dataset having
an increasing class imbalance. The first strateqy in the second row of plots consists in selecting
constraints for each example rather than a global random selection to avoid having no similar
constraints between minority examples in highly imbalanced scenarios. The second strategy (the
third row of plots) consists in weighting the importance of the pairs depending on their labels to
prevent the less represented constraints from being ignored during the optimization process and,

as a result, not satisfied in the newly learned representation space.

We illustrate in Figure 2.3] the two main strategies used by our proposed method to deal
with the class imbalance. It depicts a toy dataset where two classes of points are represented
initially in equal proportions, and where the percentage of examples of one of the two classes is
gradually decreased from 50% to 1%. In the second row of plots, when increasing the imbalance,
a random selection of the pairs of examples tends to select 0% of the pairs between minority
examples when the data is extremely imbalanced with only 1% of minority examples. However,
our first strategy to select the pairs of examples based on the k nearest neighbor rule allows to

obtain by construction the same percentage of pairs as the percentage of minority examples,
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because k pairs are selected for every example.

We also notice in the third row of plots that the uniform weight given to the loss of every
constraint by classical metric learning algorithms as done in Equation is not adapted for
imbalanced data. Indeed, the metric learning algorithm tends more and more to ignore the
less represented constraints because they tend to not be satisfied in the new representation
space (only 26.67% of constraints satisfied from 1% of positives). Our proposed weighting
scheme allows to much better fulfill the similarity constraints between minority examples by

re-balancing the importance given to the two classes in the objective function.

2.4 Generalization bound for IML

In this section, we provide a theoretical analysis of our algorithm using the uniform stability
framework [Bousquet and Elisseeff, 2002| recalled in Section This framework can be
adapted to any metric learning algorithm |Bellet et al., 2015, |Jin et al.l 2009| taking the following

form:

. . /
min GM) = ( %;32 (M, z,2") +AReg(M) , (2.4)

R(M)

where ]/%(M) is the empirical loss of M on S, and £ is any loss function that is ¢-Lipschitz and
(0, p)-admissible as defined in the following.

Definition 2 (g-Lipschitz function). A function f is q-Lipschitz w.r.t. its first argument if for
any u,v,

[f(w) = f(v)] < qlu—vl.
Definition 3 ((o, p)-admissible function). A loss ¢ is (o, p)-admissible w.r.t. its first argument
M if it is conver in M and if Vz1, 2o, 23, 24,
[6(M, z1, 23) — (M, 23, 24) | <0 |y12—y34|+P
with y;j= + 1 if y;=y,; and y;;= — 1 otherwise.

To prove a uniform stability-based generalization bound, the algorithm has to be stable—
meaning that its output does not change significantly under a small modification of S— ac-

cording to the following definition.

Definition 4 ([Jin et al.l [2009] Eq. (5)). A melric learning algorithm has uniform stability in
B >0 w.r.t. the loss function ¢ if Vi € {1,...,m} the following holds
VS e Z™, sup {E(M,z,z’) — E(Mi,z,z')‘ <8,

where M is learned from S, and M? is learned from S, the set obtained by replacing the it"

example in S by another also i.i.d. from D.
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If an algorithm has uniform stability, then it is possible to derive an upper bound on its
generalization error using the McDiarmid inequality [Bousquet and Elisseeff] [2002] recalled

below.

Theorem 2 (McDiarmid Inequality, |[Bousquet and Elisseeft, |2002] Th. 2). Let G : Z™ — R

be any function for which there exists constants ¢;, Vi € {1,...,m} such that

sup |G(S) — G(Si)] < ¢,
SeZm,zieZ

then

Ve>0, Pg

‘G(S) R [G(S)]‘ > e] < 2exp <Z_73622>

i=16;

where Pg denotes the probability with respect to the random draw of the dataset S from D™.
Then, one can derive the following theorem.

Theorem 3 (|Bellet et al., 2015 Th. 8.11). Let S be a dataset of m randomly selected training
examples and M be the PSD matriz learned from an algorithm with stability 5. Assuming that
the loss { is q-Lipschitz and (o, p)-admissible, with probability at least 1 — & over the random
choice of S ~ D™, we have the following bound on the true risk R(IM)

~ In2/4§
R(M) < R(M) + 25 + (ZmB +2(20 +p)) n2/ .

2m

This kind of generalization bound has two advantages: (i) unlike Vapnik-Chervonenkis
dimension-based bounds [Vapnik and Chervonenkis, [1971|, it takes into consideration properties
of the algorithm, and (i5) it offers tools to deal with the fact that the pairs of examples are
usually not drawn 7.i.d. from D x D |Bellet et al.l 2015|. In the rest of this section, we first show
that our loss is ¢-Lipschitz; then, we prove that our algorithm is stable, and finally, we derive
a generalization bound on its true risk using the McDiarmid inequality. In the following, we

assume that the norm of any example is upper-bounded by a constant, i.e., V& € R, ||z|| < B.

Lemma 1. Let M, M’ be any matrices and (z,2’) any pair of labeled examples, then the loss

¢, as defined in Equation (2.2)), is q¢-Lipschitz w.r.t. its first argument, i.e., we have
[0(M, 2,7') — €M, 2,2')| < qM ~ M|,
with ¢ = 4B2.

Proof. Let z = (x,y), z = (x',y') be two examples and M, M’ be two matrices. If y = +1
and 3y = +1 we have

)K(M,z,z’) — (M, z,2))

= )aﬂl(M, z,2') —ali (M, z, z’)‘
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= |aldx(@, @) ~ 1] — aldip (@, 2') — 1], |

= | [da(w,2) ~ 1]~ [Byp (@,2)) ~ 1] (2.5)
< |1ds(@, @)~ 1] ~ [y (@.2) ~ 14| (2.6)
< )d%,l(:c,:r;') —1-Bp(x,x')+ 1‘ (2.7)

= ’d%vl(:n, x') — dip(x, )

= <ac —z', (M —-M)(z - w’)>

<l —'|[|(M - M)(@ - )| (2.8)
< o — @'l — 2| IM ~ M| (2.9)
< (Il + 1= 21) (2 + | = ')} ) IV = M (2.10)
<AB) M —M|F. (2.11)

Lines and come from the fact that a € [0, 1], line is obtained by using the fact
that Yu € R,Vv € R we have | max(0,u) — max(0,v)| < |u — v|, Line from the Cauchy-
Schwarz inequality, Lines and from norm properties and Line from the fact
that we assumed that Vo € R?, ||«|| < B. Similarly when y = +1 and 4/ = —1, or y = —1 and
y = +1ory=—1and y = —1, we obtain a bound of 4B?||M — M’||r. Thus for any pair of
labeled examples (z,z’), we have ‘E(M,z, z') — (M, z, z’)‘ < ¢q|M —M||p with ¢ =4B*. O

Let M be the matrix learned from S and Sim™, Dis™, Dis~ and Sim™ be the subsets of pairs
coming from S x S as described in Section The true and empirical losses are respectively
defined as:

RM)= E ((M,z,72)

_ZND,Z’ND
~ 1
and R(M) :2< Z al;(M,z,z') + Z (1-a)t1 (M, z,2') +
m (z,2")€Sim™T (z,2')€SIm™

> be(Mzz)+ > (1—b)€2(M,z,z’)>.

(z,2’)€Dist (z,2")eDis™

where DE o denotes the expectation with respect to the random draw of z and z’ according
z~D,z' ~

to D. Thus Equation (2.3) can be reformulated as:

in F(M) = R(M M —I||2.
Inin (M) = R(M) + A|| %

Uniform Stability of IML. We now proceed to show that our algorithm satisfies Definition [4]
For that purpose, we introduce a lemma similar to Lemma 20 from Bousquet and Elisseeff [2002]
and Lemma 8.6 from Bellet et al.| [2015].

Lemma 2. Let matrices M* and M* be the minimizers of F on S and S* respectively. Let

* *7 * _ + . . .
AM* = M* —M* and p = " the proportion of minority evamples. Then for any t € [0,1]
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we have
IM* 1|7 — |[M*+tAM* 1|} + |[M*—I|% — [ M*—tAM*~I| %

a(2p—1)+2(1 — .
S((p ) +2( p)>2qt”M M

Am

Proof. Firstly, a convex function f satisfies for all w,v and for all ¢ € [0, 1],

flutto—w) = flu) <tf(v) —tf(u).

Let RI(M*) be the empirical risk over S Since R{(M*) is convex, we have
R{(M* + tAM*) — R (M*) < tR'(M*) — tR'(M*). (2.12)
By switching M* and M** we have
RY(M* — tAM*) — R{(M*) < tR'(M*) — tR'(M*). (2.13)
Summing Equation and Equation (2.13]) gives
R{(M* 4+ tAM*) — R{(M*) + R/(M* — tAM*) — R{(M*") < 0. (2.14)

We denote Fg and Fg: the function F to minimize respectively on S and on S?. Since M* and

M*? are the minimizers of Fg and Fg:, we have

Fs(M*) — Fs(M* +tAM*) < 0, (2.15)
and Fgi(M*) — Fgi(M* — tAM*) < 0. (2.16)

Summing Equations (2.15) and Equation (2.16]) gives
Fg(M*) — Fg(M* + tAM*) 4+ Fg:(M*) — Fg:(M* —tAM*) < 0. (2.17)
Replacing F' in Equation (2.17)) by its definition gives
R(M*) — R(M*+tAM*) + Ri(M*) — R (M* —tAM?*) + A(HM*_IH%
— [IMHAM T} + [ M-I} — [M—tAM*-T}) < 0. (2.18)
Adding Equation (2.14) to Equation (2.18)) gives
A(IVE T3 — M +HAM-T) + M1 — MYt AME -]} )
< —R(M*) + R(M* + tAM*) — R{(M* + tAM*) + R*(M?*). (2.19)
The left-hand side of Equation (2.19) corresponds to the left-hand side of the lemma multiplied
by A. As described in Section we consider subsets of S x S which are Sim™, Dis™, Dis~ and
Sim~. We do the same for S% x S to obtain Sim'", Dis'T, Dis'™ and Sim'~. Let U,U*, V,V?,
W, W* and X, X’ be the sets of different pairs respectively between Sim™ and Sim'", between

Dist and Dis'", between Dis~ and Dis'~ and between Sim~ and Sim‘~. Since the other pairs

cancel each other, by bounding the right hand side we have

R(M* + tAM*) — R(M*) — R (M* + tAM?*) + R'(M*)
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< ‘E(M* tAMY) — R(M*) — R{(M* + tAM*)+ Ri (M*)

Y (M HAMY 2,2) (M7, 2,2))) +

m2
(z,2)€Sim™
b
— Y (LM HAM*, 2,2')—(,(M*, 2,7))) +
m
(z,2’)€DisT
1-b
. Z (EQ(M*—H,AM*, 2,2 )—lo(M*, z, z')) +
(z,2")eDis™

IT;2a Z (6 (M*+tAM*, z,2')— 1 (M*, z,2)) +

(z,2")ESim™
% Z (—El(M*—HEAM*, z,7 )+, (M*, z, z')) +
(z,2')€Sim'T
b
pooc) (—Eg(M*—i—tAM*,z,z/)—i—ZQ(M*,z,z’)) +
(z,2")€Dis't

1—
me Z (=l (M*+tAM*, z,2')+02(M*, 2,2')) +
(z,2')EDis*~

(= (M*+tAM*, z,2')+(,(M*, z,2'))

(z,2")€Sim*~

a * * *
< W Z gl(M +tAM 7Z7Z/)_€1(M aZ7Z/) +

— lo(M* +tAM*, z,2') — (o(M*,z,2') |+
m

1-b
Z lo(M* +tAM*, z,7') — (5(M*,z,2') |+

0 (M* +tAM*,z,2') — (1(M*, z,2') |+

m& Z O (M* +tAM*, z,2) — (1(M*, z,2') |+

b
— Y | +tAM?,2,7)) — (,(M*,z,2) |+
m .

2
(z,2')eV?
1 —b * * / * /
5 lo(M* +tAM*, z,2") — lo(M*,z,2') |+
(z,2)eW?
l—-a * * ! * !
— 0H(M* +tAM*,z,2') — (1(M*,2,2)| .
(z,2')eX?

Depending on the label of the example replaced and the label of the substitute instance, the
sets U, U, V, VI, W, W X and X* will contain a different number of pairs. This number is

at most 2m™ for |U| + |U?| (by taking in Sim™ all the m*m™ possible pairs), at most 2m~ for
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2.4. Generalization bound for IML

|V|+|V? and |W|+|W?| (by taking in Dis* and Dis™ all the m*m™ possible pairs) and at most
2m~ for | X| + |X?| (by taking in Sim~ all the m~m~ possible pairs). Using the g-Lipschitz
property from Lemma [I] we obtain

|R(M* 4 tAM*) — R(M*) — R{(M* + tAM*) + R*(M?*)|

<am++(b+1—b+1—a)m_
2

) 2qt||M** — M*||
m

_ <a(2p - 1)7;1_ 2(1 — P)) 2thM*i _ M*HF )

Combining with Equation (2.19) gives

IV —X[f — M AM = T|[% + [ M7 -I|[7 — M —tAM" 1|7
< (a(Zp —1)+2(1—p)

2qt||M* — M*|| .
e Ir

O]

The parameter b of Equation does not appear in this Lemma. While in the experiments,
in order to scale to large datasets, the pairs will be generated by using the k-neighborhood of
the examples, we derived the proof in Lemma [2] by using all the pairs, that allowed us to get
rid of the parameter b. This enables us to provide a more general result that does not depend
on additional parameters (here the k of the k-nearest-neighbor rule).

Along with the ¢-Lipschitz property of Lemma [I] Lemma [2] allows us to prove that IML is
stable.

Lemma 3. IML has uniform stability with

4 2¢> (a(2p —1)+2(1 - p))

m

Proof. By setting t = % in Lemma [2| we have

IV T & (V4 M) T3 M T3 || (M) 1
— IMF = )% + M - 1% — 2 4+ M) — I
= M = T+ M- T3 — 2 | v M — 21
— M — T+ M- T3 — 23 M M -2t
SN 1Y S TV S (/P .Y S A Y S [
= (M —ILM*-I)+ (M* - I,M* - 1) —
(M —I+MY - LM —I+M*" 1) (2.20)
_ %((M*,M*> i <M*17M*z> _ <M*7M*z> _ <M*’,M*>> (2.21)
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= M* - M*|[3,

where from Equation (2.20)) to Equation (2.21]) we develop using (A + B,C + D) = (A,C) +
(A,D) + (B,C) + (B, D), with (-,-) is the Frobenius inner product.

To resume, from Lemma [2f with ¢ = % we have

a2p—1)+2(1—p)
o ) 2q.

IV — M < (
Using the ¢-Lipschitz property of £ we obtain that

|((M*,z,2") — E(M*i,z, z')|
‘ (a(2p— 1) +2(1 - ,0)) %

Am

IN

2> (a(2p —1)+2(1 - p))

m

= 8.
]

Derivation of the main result. To prove our bound, we follow the derivation of The-
orem 8.11 from [Bellet et al.|[2015]. We first provide two lemmas, and then we use them in
conjunction with the McDiarmid inequality to derive a generalization bound.

First, we introduce a lemma that bounds the difference on the empirical risk over S and S°.

Lemma 4. Let M* be the optimal solution of Equation (2.3). We have

]R(M*) ~ R(M)

2(a(2p —1)+1-— p)4B2HM*HF +2(1 = p)(14r)

m

<

where R and R' denote respectively the empirical risk over S and S°.

Proof. Let M be the optimal solution of Equation (2.3) and S a training set. In a similar way
as in the proof of Lemma , let U, U, V,V¢, W,WW% and X, X be the sets of different pairs
respectively between Sim™ and Sim'", between Dis™ and Dis'", between Dis~ and Dis'™ and

between Sim™ and Sim‘~. Then

’f?(M*) ~ Ri(MY)

= % Z 6 (M*,z,2)— Z 6 (M*,z,7') | +
(z,2')eU (z,2') €U’
% Z KZ(M*aZ’Z/)i Z ‘62(M*7Z7Z,) +

(z,2")eV (z,2' )€V
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2.4. Generalization bound for IML

1-0
m2 Z EZ(M*aZ’Z,)_ Z EQ(M*vzaZ,) +
(z,2")eW (z,2")EW?
1—
mga Z El(M*7Z7Z/)_ Z f1(1\/—[*7Z7Z/)
(z,2")eX (z,2')eX
a B X
< | X ame | Y aee] |+
(z,2')eU (z,2')eU?
b
— ST @+r)|+] Y A+r)||+
(z,2")eV (2,2 )€V
1-0
— SoA+r)|+] Y +r)|]+
(z,2')eEW (2,2 )EW
1-a “ N
e NI SIT: VR B ST IV (2.22)
(z,2')eX (z,2')eX?

where Equation (2.22) comes from the fact that sup,, ,, £1(M*,z1,2;) < 4B?||M*|| (obtained
similarly as in the Proof of the ¢-Lipschitz property) and that sup,, ,, f2(M*,z1,22) < 1+ &
(because the Mahalanobis distance is always positive).

As 4B?||M* || and (1 + k) are always positive, we have

‘E(M*) — Ri(MY)

< (@(UIHU) + (1 = ) (1X |+ X7]) ) 4B M
< —
(b(IVI+IV]) + (0 = B) (IW|+W]) ) (145)

2

m
As in the proof of Lemma [2, the number of pairs in the subsets is at most m™ for U and
U', and at most m~ for V, V¢, W, W X and X’. Thus for any labeled example replaced by
any labeled example, we have
)E(M*) ~ Ri(MY)
< 2(am™ + (1 —a)m™)4B?|M*||p 4+ 2m~ (b + 1 — b)(1+k)
< 2
2(a(2p = 1) + 1= p)4B2 M| +2(1 = p)(1+r)

m

O]

We recall a useful Lemma coming from Bellet et al.|[2015] and [Bousquet and Elisseeft| [2002]:

Lemma 5 (|Bellet et al., 2015] Lemma 8.9, [Bousquet and Elisseeff, 2002] in Proof of Theorem
12). For any learning method of estimation error R(IM) —é(M) and satisfying uniform stability

in B we have

Es[R(M) — R(M)] < 28.
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Using Lemma 4] and the stability of Lemma 3] we introduce a lemma similar to Lemma 8.10
by Bellet et al.| [2015].

Lemma 6. Let matrices M* and M* be the minimizers of F on S and S° respectively. As
IML has stability B, we have

R(M*) — R(M*) — (R(M*i) - Ei(M*i))

with
D= 2((1(2p —1)+1- p)4B2||M*||F +2(1 — p)(1+k).

Proof.
R(M*) — R(M*) — (R(M*i) - ﬁi(M*i))‘
= |R(M") - R(M") — R(M™) + R'(M") + R(M™) — R(M*)
= |R(M*) — R(M*) + R(M*) — R(M*) + R'(M*') — R(M*)
< |R(M") = R(M™)| + | R(M™) — R(M™)| + [R'(M*) — R(M™)
<At
_2mf+D
with :
D:2(a(2p—1)+1—p)4B2||M*||F+2(1—p)(l—l—fi). O

We are now able to state our main result.

Theorem 4 (Generalization bound for IML). Let S be a dataset of m = m™ +m™ randomly
selected training examples with p = % the proportion of minority examples and let M* be the
optimal solution learned from Equation having stability B. With probability af least 1 — 6
over the random choice of S ~ D™, we have

In2/§

R(M*) < R(M*) + 283 + (2mf3 + D) 5
2* (a(2p— 1) +2(1 - p))
m

and D = 2(a(2p —1) 41— p)4BZHM*”F 4201 - p)(145).

with B =

Proof. From Lemma@ we know that the variable G(S) = R(M*) — R(M*) satisfies the condi-
tion of the McDiarmid inequality with the same ¢; = w Vi € {1,...,m}. By applying the

inequality we have

Bs[|6(5) - Bsl6(S)] 2 ] < 2em ().
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2.4. Generalization bound for IML

By setting d to the right hand side of the previous inequality we obtain

—9¢2
0= 2exp< 62>
me;

—2e2m?
<= Inj/2 = m@mA + D)
In2/§ €
om (2mpB + D)?
In2/§

< e=(2mpB+ D) Sy

Thus with probability at least 1 — & we have

|G(S)—Es[G(S)]] <€

In2/6
= 6(S)-Es[G(S)] < (2m8 + D)y 2
In2/s
= G(S) < Es[G(S)] + (2mB + D) “2 n{
_ In 2
e R(M*) < R(M*)+25+(2mp + D) n2 nﬁ . (2.23)
where Equation comes from Lemma O

Discussion. The difference between our Theorem [l and classic bounds of the form of
Theorem (3| is that proportion of minority examples p = "% and the weight of the similar
minority pairs ¢ appear in the two terms 8 and D. Classic metric learning bounds are derived
in a balanced setting where p = 0.5 (i.e., positives and negatives are balanced) and where the
parameters a and b are equal to 0.5. It is worth noting that plugging these values in our bound
allows us to retrieve the constant 3 = % as derived in Theorem 8.7 by Bellet et al.[[2015]. This
means that our § formulation is a generalization of the standard stability constants in metric
learning. Regarding the term D, the decomposition into four terms allows us to get a tighter
bound by a factor 4 with D = 4B?|M||r + (1 + &) while D = 16 B?||M||r + 4(1 + x) by Bellet

et al. [2015].

Another interesting interpretation of our bound is that when p tends to 0, i.e., the dataset

is more and more imbalanced, a classic metric learning method (with a = b = 0.5) will converge

slower. Indeed, in such a situation, we get a stability constant 8 which would tend to % > %
2(_ .
while by parameterizing by a, we have W. In this case, a value of a close to 1 allows us

to reduce the negative effect of the imbalance.
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Table 2.1: Description of the datasets (m: number of examples, d: number of features, c: num-

ber of classes) and the class chosen as positive (Label), its cardinality (m™) and its percentage

(%).

Name m d ¢ Label mt % Name m d ¢ Label m™ %
splice 3175 60 2 -1 1527 48.10% glass 214 11 6 1 70 32.71%
sonar 208 60 2 R 97 46.64% newthyroid 215 5 3 2,3 65 30.23%
balance 625 4 3 L 288 46.08% german 1000 23 2 2 300 30.00%
australian 690 14 2 1 307 44.49%  vehicle 846 18 4 van 199 23.52%
heart 270 13 2 2 120 44.44%  spectfheart 267 44 2 0 55  20.60%
bupa 345 6 2 1 145 42.03% hayes 160 4 3 3 31 19.38%
spambase 4597 57 2 1 1812 39.42% segmentation 2310 19 7 window 330 14.29%
wdbc 569 30 2 M 212 37.26% abalone 4177 10 28 8 568 13.60%
iono 351 34 2 b 126 35.90% yeast 1484 8 10 ME3 163 10.98%
pima 768 8 2 268 34.90% libras 360 90 15 1 24 6.66%
wine 178 13 3 1 59 33.15% pageblocks 5473 10 5 3,4,5 231  4.22%

2.5 Experiments

2.5.1 Datasets

We provide here an empirical study of IML on 22 datasets coming mainly from the UCIF’_r] and
Keel"| repositories except for the ‘SPLICE’ dataset which comes from LIBSVMP] All datasets are
normalized such that each feature has a mean of 0 and a variance of 1.

For the sake of simplicity, we have chosen binary datasets, described in Table where the
minority class is given by the columns “Label”. IML can easily be generalized to multi-class
problems by learning one metric per class in a standard “one-versus-all” strategy, and then

applying a majority vote [Scholkopf et al., |1995| [Vapnik| 1995].

2.5.2 Optimization details

Like most Mahalanobis metric learning algorithms, IML requires the learned matrix M to
be PSD. There exist different methods to enforce the PSD constraint [Kulis, 2013]. A classic
solution consists in performing a Projected Gradient Descent where one alternates a gradient
descent step and a (costly) projection onto the cone of PSD matrices. The advantage is that the
problem remains convex [Xing et al. 2003| w.r.t. M, ensuring that one will attain the optimal
solution of the problem by correctly setting the projection step in the gradient descent. Another
solution [Weinberger and Saul, 2008| is based on the fact that if M is PSD, it can be rewritten
as M = LTL. Therefore, instead of learning M, one can enforce M to be PSD in a cheaper way
by directly learning the projection matrix L € R™? (where r is the rank of M). This can be
done thanks to a gradient descent by computing the gradient of the problem w.r.t. L (instead

Shttps://archive.ics.uci.edu/ml/datasets.html
“http://sci2s.ugr.es/keel/datasets.php
Shttps://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#splice
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2.5. Fxperiments

of M). The implementationlﬂ we propose is based on this latter approach [Weinberger and Saul,
2008] where we make use of the L-BFGS-B algorithm |Zhu et al. |1997] from the SciPy Python
library to optimize our problem: it takes as input our initial point (the identity matrix), the
optimization problem of Equation , and its gradient, then it performs a gradient descent
that returns the projection matrix L minimizing Equation (2.3). To prevent us from tuning r
and finding the best r-dimensional projection space, we set r = d in the experiments. Indeed,
our main objective here is to learn a robust metric and not to perform dimensionality reduction.

As discussed at the end of Section [2.3] the pairs of examples considered by IML in its four
terms are chosen using the nearest neighbors rule. Indeed, we noted experimentally that the
algorithms using this strategy (LMINN [Weinberger and Saul, |[2009], IMLS [Wang et al., 2018]
and IML) perform better than the ones using a random selection strategy (ITML [Davis et al.,
2007] and GMML |Zadeh et al.; 2016]).

2.5.3 Experimental setup

All along our experiments, we use a 3NN classifier (like in LMINN [Weinberger and Saul,
2009]) after projection of the training and test data using the metric learned. The metrics
considered in the comparative study are the Euclidean distance and the ones learned by LMNN
[Weinberger and Saul, 2009], ITML [Davis et al., [2007], GMML [Zadeh et al., [2016], IMLS
[Wang et al.,[2018] and IML. For each dataset, we generate randomly 20 stratified splits of 70%
training examples and 30% test data (same class proportions in training and test) and report
the mean results over the 20 splits. The parameters are tuned to maximize the Fl-measure
by doing a 5-fold cross-validation on the training set through a grid search using the following
parameter ranges: for LMNN and IMLS, p € {0,0.05,...,1} (k is fixed to 3); for ITML,
v € {271910}; for GMML ¢ € {0,0.05,...,1}; and for IML we fix a = b = ™~ and we tune
k € {1,10,100, 1000,10000} and X € {0,0.01,0.1,1,10} (k is also set to 3).

2.5.4 Analysis of the results

First experiment—without data pre-processing We start by applying the experimental
setup described above and we report the results in Table 2.2] On average, the Fl-measure of
72.3% obtained by IML is the best in comparison to 70.8% for LMINN and IMLS, 70.1%
for ITML, 69.3% for GMML and 67.3% for the Euclidean distance. Overall, IML shows
also the best average rank of 1.52. IML generally gives better performances on the datasets
considered no matter how much they are balanced or not. This means that our re-weighting
scheme of the pairs can not only improve the performances in an imbalanced setting but can

be also competitive in more classic scenarios.

Second experiment—with data pre-processing As previously said, to address imbal-

anced data issues, classic machine learning algorithms typically resort to over/under-sampling

5The code is available here: https://leogautheron.github.io
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Table 2.2: Awverage Fl-measure £ standard deviation over 20 splits using different metric

learning algorithms.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 449 £ 132 57.2+£125 554+£87 527+£108 572+£125 549+92
wine 949 £ 22 96.0 £29 963 £33 953£31 96.0£29 96.6+21
sonar 69.2 £ 5.3 70.6 65 706£59 691£50 T71.1£67 T74.6+3.7
glass 660+34 636+52 626+52 67.2E£36 636+£52 66.6+£43

newthyroid 834 £42 88152 898+£52 911+£25 881£52 91.3+26
spectfheart 348 +£123 39184 344£79 291+114 386 +87 42487

heart 76.8 £ 2.1 748 +32 768£29 T769+£36 T46£31 T7.1+31
bupa 498 £44 50150 51.3£48 520£53 501£50 52.5+51
iono 678 £6.7 T708+39 734x£54 T720+£54 T71.0+£40 76.1 %29
libras 484 £15.1 68.3 £122 655+£153 56.1 £163 66.6 £ 103 67.9+£12.1
wdbc 942 £ 1.3 93.5 1.7 943 £11 944+13 934+£22 952+1.1
balance 874 £ 1.8 89.8+13 93.0+14 903£13 898+£13 90.6=E1.2
australian 799+17 81720 82.0+19 81.0+26 814+20 81.9+1.8
pima 56.2 £ 1.9 559+ 33 57.5%+30 56.7£30 559£33 572£27
vehicle 805+24 926+10 902+24 90117 925+£12 91.8+£19
german 353 £28 37339 374+£33 371£33 378£37 384+35
yeast 73.2 £ 2.3 749 +28 742£31 T735£26 T45+£27 T54+24
segmentation  81.8 2.4 853 £ 2.1 796 £3.0 808+£31 8.6+£23 86.0%25
splice 763 +07 8.5£08 T79.7+14 T763+13 88.0+£09 874+0.6
abalone 22,6 £ 2.1 221 +£21 21.24+3.0 216+1.7 221+21 23.0x+19
spambase 853 £ 0.9 884 +08 87810 868+08 8.7+£05 89.3+08

pageblocks 71.9 £ 3.0 71.8+32 69.7£51 73.7+£29 T718£31 T734£26

Mean 67.3 £4.2 70.8 £ 4.1 70.1 +£43 693+£42 708+£40 72.3%35

Average Rank 5.00 3.57 3.57 4.00 3.35 1.52

techniques |Aggarwall, 2013| or create synthetic examples in the neighborhood of the minority
class—e.g., using SMOTE-like strategies [Chawla et al.l [2002]. We now aim at studying the
behavior of those methods when used as a pre-process of the metric learning procedures. We
consider the results of Table as baselines. We compare them to the performances obtained
after performing prior to metric learning an over-sampling using SMOTLE and a Random Under
Sampling (RUS) strategy of the negative data. We use the implementations of these methods
from the Python library imbalanced-learn |Lemaitre et al., 2017].

The results obtained are reported in Table for SMOTE and Table RUS and were
computed using the same training/test splits as in Table and the same validation folds.
Thus, they are comparable. In each of the three settings considered, IML obtains the best
results showing that it is more appropriate for improving the Fl-measure. SMOTE allows one
to increase significantly the performances of all methods, while there is no gain with RUS in
comparison with an approach without sampling.

This increase of performance suggests that SMOTE and IML are more complementary than
competitors with different objectives. This intuition is supported by the following explanation.

Learning a Mahalanobis distance boils down to optimizing an ellipsoid centered at each point
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Table 2.8: Same experiment as in Table after having applied the SMOTE algorithm [Chawla

et al., [2002] until m™ reaches m™.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 68.0 68 644+76 67878 69.5+£72 642+76 686=£72
wine 92.7+£28 953+£30 963+26 944+32 954+29 96.7+22
sonar 726 £42 73.0+64 726+£45 T124+42 72760 75.2F48
glass 666 £29 66.1+40 646=+32 67.4+£38 661+42 662=£35

newthyroid 87.6 £ 3.5 88.7+40 91.6 £32 899 +43 88.7+40 90.7+22
specttheart 474 +23 419 +85 46.7+69 49.1+44 409+73 46.1+78

heart 77.3£20 75.0+£26 T57+£41 T72+£39 T744+30 769 +23
bupa 541 +£31 554+34 539+£37 559+41 554+34 548+£35
iono 784 £26 TTTE37 TT5£38 782439 T69+39 79.9=£39
libras 68.3 £81 76.7+85 69.7+13.8 69.2+11.0 69.0+ 147 78.1+94
wdbc 934+£13 935+22 940£14 936+15 93.0x+22 94.8=+13
balance 874+19 896 +15 921 +14 89.8+19 895+15 905+14
australian 80.3 £ 1.6 80.7+32 824 +15 81.1+18 81.1+32 821+£1.6
pima 60.1 2.6 60.1 21 608+22 60.3+28 60.1+21 61.2+20
vehicle 806 £21 920+16 899+31 895+21 923+15 91.1+14
german 46.3 £2.2 454 +£35 464 +18 46.0+£23 451+£34 471 +20
yeast 65.9 £29 67.1+3.7 704+28 684+23 682+37 704=£30
segmentation 82.0 £1.9 838 +£29 81.6+22 815+18 84.8+32 848+22
splice 749 +09 863+08 796+12 764+13 879+11 872+£06
abalone 32.3+07 314+£17 319+08 31.7+11 3l5£12 323+1.0
spambase 859+£07 8.5+06 87.4+£09 872+08 888+08 89.4£08

pageblocks 62.0+£29 61.5+41 555+£40 61.5+35 61.0+41 62.5=E35

Mean 71.1+£27 T725+£36 722+£35 T7224+33 721+39 73.9=£31

Average Rank 4.26 3.91 3.39 3.39 4.17 1.87

which modifies only locally the decision boundaries. However, these ellipsoids have no impact on
regions of the feature space where there is no positive example. Instead, the SMOTE algorithm
has this capacity to expand the decision boundaries by placing new synthetic examples in areas

not covered by the ellipses.

Third experiment—increasing the imbalance We now aim at showing the efficiency of
our method by artificially increasing and decreasing the imbalance. For a given dataset, we
create a maximum of 10 synthetic variants where the percentage of minority examples is in

{50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%}. To create a synthetic variant of a dataset with
a percentage of minority examples higher than in the original dataset, we apply a random under
sampling of the majority class until the desired percentage is reached. Similarly, to create a
synthetic variant with a smaller percentage of minority examples, we apply a random under
sampling of the minority class. We create the synthetic variant of the dataset only if it contains
at least 20 minority examples. For example, for the dataset SPECTFHEART, we cannot go under
10% of minority examples. Due to the small number of minority examples present in the more

imbalanced synthetic variants of the datasets, we split them into 50% training and 50% test
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Table 2.4: Same experiment as in Table after having applied a Random Under Sampling of

the negative examples until m~ reaches m™.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 634+£90 67.7+74 647£67 664+£81 67774 66.0L£76
wine 912+£26 941+£28 94.2+£38 927+£37 941+£29 939+32
sonar 704+52 731+£63 70257 699+£55 T711+£92 T4.4+438
glass 646 £35 632+£45 61.1+£49 64.6+31 627£50 645+£47

newthyroid 866 £46 914+£50 91.1£49 906=£33 914£50 923+£26
spectfheart 442 +£39 426 £80 46.7+46 459+56 426+80 48.8£6.3

heart 774 +20 T758+£33 T766+25 T773£19 T55+£33 T71x21

bupa 53.8 £41 541+48 546+41 55.7+£36 541+48 55.0=£32

iono 73.1+£52 T733+41 T754+£34 T47+32 T733+41 T7.3+£30
libras 343 £10.6 35.6+10.9 382+122 364+126 356 +109 39.3+138
wdbc 93.7+12 929+16 93.6+18 932+21 923+25 94.7+14
balance 8§75 +15 90.1+13 92.8=+15 90.1+£17 902+13 90.7+14
australian 80.4 +£1.7 81722 822416 815+£23 8L7+22 82.5+22
pima 60.8 £2.7 60521 62.2+17 608+24 604+21 61.2£25

vehicle 74.0+£31 89.7+16 87.7T£26 8.5+31 89.7+20 89.3+£19

german 46.7+1.6 469 £25 473+23 475£16 462+20 48.0+1.38
yeast 572 +45 60.8+46 609+38 59.7+£38 612+49 61.9+39
segmentation  64.6 £3.1 704 +24 65.7+34 64329 724429 74.2+18
splice 79+£07 8.5+06 T795£16 T762+12 87.9+09 87.2+06
abalone 328+ 1.1 325+£14 325+13 316=+10 322+13 326x14
spambase 8.0+10 8.1+11 8.8+12 8.2+12 84+0.7 88.7+x0.38
pageblocks 46.8 £3.7 50.2+48 43.0+52 483 +£45 49.6+5.6 49.1+4.0
Mean 66.6+£3.5 69.1£3.8 68.5+3.7 68.1£3.6 69.1+£4.0 70.4+3.4

Average Rank 4.83 3.65 3.30 3.96 3.43 1.83

examples. We report the mean results over 20 iterations where at each iteration we recompute
the synthetic variants of the dataset and the train/test splits.

The results for the SPECTFHEART dataset (already used in the introduction of this chapter)
are reported in Figure 2.4l We see that like the other algorithms, IML shows the same drop of
Fl-measure when increasing the imbalance, which shows the difficulty of learning from highly
imbalanced data. However, it is important to notice that the drop of performances of IML is
the smallest among all algorithms.

To confirm the efficiency of IML when facing imbalance data on a wide range of datasets,
we present in Figure the results of the same experiments by averaging the results over the
22 datasets. We observe the same behavior as for the SPECTFHEART dataset. Again, it is worth

noticing that IML is always more robust while facing imbalanced classes.

Fourth experiment—analyzing why IML is better than the other metric learning
algorithms on imbalanced data When we described IML in Section [2.3] we presented two
strategies to deal with the imbalance. The first one, which is already used by some existing

metric learning methods, is a selection of the similar and dissimilar pairs based on the nearest
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BN Euclidean @2 GMML ITML = LMNN IMLS  Emmm ML
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Figure 2.4: Mean Accuracy and F1-measure over 20 splits on the SPECTFHEART dataset by
artificially increasing the imbalance. We compare state-of-the-art metric learning algorithms
with our proposed method IML.

BN Euclidean zam GMML ITML  sm LMNN IMLS  mzm& ML
Mean results over the 22 datasets
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Figure 2.5: Mean F1-measure over 20 splits and over the 22 datasets by artificially increasing
the imbalance. We compare state-of-the-art metric learning algorithms with our proposed method
IML.

neighbor rule. We proposed in this chapter a second method consisting in weighting differently
the set of pairs based on the labels of the two examples composing the pairs. To see the impact
of these two strategies, we compare in this last experiment IML with two variants.

The variant called ML2 considers the loss of IML without the re-weighting of the set of

pairs. Its loss is defined as follows:

. 1 / /
II\I/Illt%F(M)ZW( Z (M, z,2') + Z (M, z,z') +
(z,2')€Sim™ (z,2")eSim™
Z 5(M,z,2') + Z 05(M, z, z')) +AM =T1||%,  (2.24)
(z,2')€Dis™ (z,2")eDis™

where the difference with Equation (2.3) is that we no longer multiply each of the four sets
respectively by a, (1 —a), b and (1 —b).
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Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

The variant called ML1 considers the same loss as ML2, but we select randomly the pairs
of examples. In order to use the same number of pairs in ML1 and IML, we draw randomly
2mk pairs for ML1 since IML considers k similar pairs and k dissimilar pairs per training

example.

ML1 zZm ML2 @R IML
Mean results over the 22 datasets

Fl-measure
()]
o

50% 40% 30% 20% 10% 5% 4% 3% 2% 1%
Percentage of positive examples

Figure 2.6: Mean F1-measure over 20 splits and over the 22 datasets by artificially increasing
the imbalance. We compare two variants of IML. The variant ML2 removes one component
that allows IML to deal with the imbalance: the re-weighting of the pairs. ML1 removes in
addition another component to deal with the tmbalance: instead of selecting the similar and

dissimilar pairs with the nearest neighbor rule, they are selected randomly by ML1.

The results of this experiment are reported in Figure When the classes are balanced
with 50% of minority examples, we observe that IML and its two variants present more or less
the same performances. When increasing the imbalance, as expected, IML tends to be better
than ML2, this latter being better than ML1. This shows that our two strategies to deal with
imbalanced data do not degrade the results on balanced data and that they are complementary

to improve the performances in an imbalanced setting.

Fifth experiment—incorporating our two strategies to deal with the imbalance in
an existing metric learning algorithm We saw in the previous experiment that our two
strategies to deal with the imbalance improve the performances of our metric learning algorithm
when the datasets are highly imbalanced without affecting the results when the data is balanced.
We propose here to investigate if this improvement can also be observed by incorporating our
strategies to an existing metric learning algorithm. We do not consider LMNN and IMLS
because they make use of triplet constraints while our re-weighting is designed for pairwise
constraints. We also do not consider ITML because our re-weighting sometimes causes the
metric learned to be no longer PSD. Thus, we only consider GMML for this experiment as it
is the most suited metric learning algorithm to adapt with our two strategies.

Our two modifications of GMML are the following: (i) instead of selecting randomly the

pairs, we select them using the 3 nearest neighbors; (7i) instead of having the same weight for
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2.6. Conclusion and perspectives

every pair, we assign to the pairs where the first example is a positive example a weight equal
to the number of negative examples m™, and to the other pairs a weight equal to the number

of positive examples m™. We call our modification of this algorithm IGMML.

A GMML =EE IGMML EmA ML
Mean results over the 22 datasets

Fl-measure
(0]
o

50% 40% 30% 20% 10% 5% 4% 3% 2% 1%
Percentage of positive examples

Figure 2.7: Mean F1-measure over 20 splits and over the 22 datasets by artificially increasing
the imbalance. We compare the existing metric learning olgorithm GMML with o variant

(IGMML) that incorporates our two strategies to deal with the imbalance.

We report the results of this experiment in Figure As already noticed, we observe
that the algorithms present the same performances when the data is balanced. On the other
hand, the variant built upon our two strategies tend to improve the results when increasing the
imbalance. This shows that our contributions are not specific to our proposed metric learning
method IML and can also be adapted to existing metric learning methods. However, it is
worth noticing that plugged into IML allows us to get better results. Even if the two strategies
are not specific to IML, they work better for our method than for IGMML when facing a

percentage of positive examples lower or equal to 10%.

2.6 Conclusion and perspectives

In this chapter, we revisit the classic formulation of metric learning algorithms that learn a
Mahalanobis metric in the light of imbalanced data issues. Our method resorts to two comple-
mentary strategies to deal with the imbalance. First, unlike the state of the art methods that
do not make any distinction between the pairs, we propose to decompose the usual loss with
respect to the different possible labels involved in the pairs of examples. This decomposition
allows us to assign specific weights to each type of pairs in order to improve the performance
on the minority class. We derive a generalization bound specific to the imbalanced setting
showing a convergence term depending on the class imbalance and illustrating the hardness of
learning from imbalanced data. Our experimental evaluation shows that we are able to obtain
better results than state of the art metric learning algorithms in terms of Fl-measure over

balanced and imbalanced datasets. Last but not least, artificially increasing the imbalance in
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Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

the datasets shows that our two strategies to deal with the imbalance are complementary while
easily adaptable to existing metric learning algorithms.

We believe that our work gives rise to exciting perspectives when facing imbalanced data.
Among them, we want to study how our algorithm could be adapted to learn non-linear metrics.
From an algorithmic point of view, we would like to extend our method by deriving a closed form
solution in a similar way as done by Zadeh et al.|[2016] to drastically reduce the computation

time while maintaining good performances.
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Chapter 3

Ensemble Learning with Random

Fourier Features and Boosting

This chapter is based on the following publications

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc
Sebban and Valentina Zantedeschi. Landmark-based Ensemble Learning with Random Fourier
Features and Gradient Boosting. In Furopean Conference on Machine Learning & Principles
and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020 |Gautheron et al.,
2020D].

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc
Sebban and Valentina Zantedeschi. Apprentissage d’ensemble basé sur des points de repére
avec des caractéristiques de Fourier aléatoires et un renforcement du gradient. In Conférence

sur I’Apprentissage automatique (CAp), 2020 [Gautheron et al., 2020a).

Léo Gautheron, Pascal Germain, Amaury Habrard, Gagl Letarte, Emilie Morvant, Marc Seb-
ban and Valentina Zantedeschi. Revisite des “random Fourier features” basée sur 'apprentissage
PAC-Bayésien via des points d’intéréts. In Conférence sur I’Apprentissage automatique (CAp),
2019, Toulouse, France |Gautheron et al. 2019a].

Abstract

This chapter jointly leverages two state-of-the-art learning strategies—gradient boost-
ing (GB) and kernel Random Fourier Features (RFF)—to address the problem of kernel
learning. Our study builds on a recent result showing that one can learn a distribution
over the RFF to produce a new kernel suited for the task at hand. For learning this dis-
tribution, we exploit a GB scheme expressed as ensembles of RFF weak learners, each of

them being a kernel function designed to fit the residual. Unlike Multiple Kernel Learning
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techniques that make use of a pre-computed dictionary of kernel functions to select from,
at each iteration we fit a kernel by approximating it from the training data as a weighted
sum of RFF. This strategy allows one to build a classifier based on a small ensemble of
learned kernel “landmarks” better suited for the underlying application. We conduct a thor-
ough experimental analysis to highlight the advantages of our method compared to both
boosting-based and kernel-learning state-of-the-art methods. Our results show that our
method, thanks to an approximation of non-linear kernels, is able to learn quickly complex

decision boundaries that generalizes well with a small number of training examples.

3.1 Introduction

Kernel methods (recalled in Section are among the most popular approaches in machine
learning due to their capability to address non-linear problems, their robustness and their
simplicity. However, they exhibit two main flaws in terms of memory usage and time complexity.
Landmark-based kernel approaches |[Balcan et al. 2008 can be used to drastically reduce the
number of instances involved in the comparisons, but they heavily depend on the choice and the
parameterization of the kernel. Multiple Kernel Learning [Wu et al.,|2017] and Matching Pursuit
methods [Vincent and Bengio|, |2002| can provide alternative solutions to this problem but they
require the use of a pre-defined dictionary of base functions. Another strategy to improve the
scalability of kernel methods is to use approximation techniques such as the Nystrom |Drineas
and Mahoneyl |2005] or Random Fourier Features (RFF) |[Rahimi and Recht, 2008] (recalled
in Section . The latter is probably the most used thanks to its simplicity and ease of
computation. It allows the approximation of any shift-invariant kernel based on the Fourier
transform of the kernel. Several works have extended this technique by allowing one to adapt
the RFF approximation directly from the training data [Agrawal et al., 2019, Letarte et al.,
2019, [Sinha and Duchi, [2016|. Among them, the recent work of Letarte et al. [2019] introduces a
method to obtain a weighting distribution over the random features by a single pass over them.
This strategy is derived from a statistical learning analysis, starting from the observation that
each random feature can be interpreted as a weak hypothesis in the form of trigonometric
functions obtained by the Fourier decomposition. However, in practice, this method requires
the use of a fixed set of landmarks selected beforehand and independently from the task before
being able to learn the representation in a second step. This leads to three important limitations:
(1) the need for a heuristic strategy for selecting relevant landmarks, (i) these latter and the
associated representation might not be adapted for the underlying task, and (i) the number of
landmarks might not be minimal w.r.t. that task, inducing higher computational and memory
costs.

We propose in this chapter to tackle these issues with a gradient boosting approach [Fried-
man| 2001] based on the boosting framework recalled in Section [1.2.5] Our aim is to learn
iteratively the classifier and a compact and efficient representation at the same time. Our

greedy optimization method is similar to the one from |Oglic and Gértner [2016], which at each
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iteration of the functional gradient descent [Mason et al., [1999| refines the representation by
adding the base function minimizing a residual-based loss function. But unlike our approach,
their method does not allow to learn a classifier at the same time. Instead, we propose to
jointly optimize the classifier and the base functions in the form of kernels by leveraging both
gradient boosting and RFF. Interestingly, we further show that we can benefit from a significant
performance boost by (i) considering each weak learner as a single trigonometric feature, and
(i) learning the random part of the RFF. This way to proceed allows us to learn well even from
small datasets.

Organization of the chapter. Section describes the notations and the necessary back-
ground knowledge. We present our method in Section as well as two efficient refinements
before presenting an extensive experimental study in Section comparing our strategy with

boosting-based and kernel learning methods.

3.2 Notations and related work

In this chapter, we consider binary classification tasks as introduced in Chapter [l We focus
on kernel-based algorithms that rely on pre-defined kernel functions k : R?xR¢ — R assessing
the similarity between any two points of the input space. These methods present a good
performance when the parameters of the kernels are learned and the chosen kernels are able
to fit the distribution of the data, as shown in Figure [1.7] However, selecting the right kernel
and tuning its parameters is computationally expensive, in general. To reduce this overhead,
one can resort to Multiple Kernel Learning techniques [Wu et al., 2017] which boils down to
selecting the combination of kernels that fits the best the training data: a dictionary of T base
functions {k:t}z;l is composed of various kernels associated with some fixed parameters, and a

combination is learned, defined as
T
H(z,z') = Zat E'(x,x'), (3.1)
t=1

with o € R the weight of the kernel k!(x,x’). As shown in Section , our main contribution
is to address this issue of optimizing a linear combination of kernels by leveraging RFF and
gradient boosting (we recall basics on it in Section 3.4.1). To avoid the dictionary of kernel
functions in Equation from being pre-computed, we propose a method inspired from
Letarte et al. [2019] to learn a set of approximations of kernels tailored to the underlying
classification task. Unlike Letarte et al. [2019], we learn such functions so that the representation
and the classifier are jointly optimized. We consider landmark-based shift-invariant kernels

relying on the value § = x'—x € R? and usually denoted by abuse of notation by
k(6) = k(z'—x) = k(z', ),

where 2! € R? is a point—called landmark—lying on the input space which all the instances

are compared to, and that strongly characterizes the kernel.
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At each iteration of our gradient boosting procedure, we optimize not only this landmark
but also the kernel function itself, exploiting the flexibility of the framework provided by |Letarte
et al| [2019]. We write the kernel as a sum of RFF [Rahimi and Recht| 2008| and we learn a
posterior distribution over them. We achieve this by studying the generalization capabilities of
the so-defined functions through the lens of the PAC-Bayesian recalled in Section This
theoretical analysis ultimately allows us to derive a closed-form solution of the posterior distri-
bution ¢ (over the RFF at a given iteration t), which is guaranteed to minimize a generalization
bound on the loss of the kernel. In the following section, we recall the framework of [Letarte

et al| and adapt it to our scenario.

3.3 Pseudo-bayesian kernel learning with RFF

The kernel learning method proposed by [Letarte et al.|[2019] builds on the RFF approximation
proposed by Rahimi and Recht| [2008] and recalled in Section Instead of drawing RFF for
approximating a known kernel, |Letarte et al.| propose to learn a new one by deriving a posterior
distribution ¢’ for a given landmark point in {x!}L ;:

kp(z! —x) = E , cos (w- (2" — ).

wrgq

Their kernel learning approach first considers p the Fourier transform of a given kernel k as a
prior distribution. Then, they aim at learning the posterior distribution ¢* by minimizing a PAC-
Bayesian generalization bound on the expected value of a loss between the landmark (¢, ")
and any point (x,y) ~ D. Following the RFF framework, this kernel can be approximated in
practice by drawing K vectors w according to p and then re-weighting each random feature

according to ¢* by computing
kgt (2! — ) = Z ¢; cos (wj - (z' —x)), (3.2)
where q' is the empirical counterpart of the distribution ¢ defined such that
K
Vie{l,...,K},0<q¢ <1, and » ¢i=1.
j=1

Let (x',y") be an example called landmark and kg the kernel built using this landmark,

then the true risk R(k,) and empirical risk ﬁ(kqt) of the kernel are respectively defined as

~ 1 e
R(ky)= E _L(kg(a'—=)), and Rlky)=—7 > b (kg (@ —xy)) .
j=1j#t
Using the PAC-Bayesian theory, they obtain the following theorem, under the linear loss
(kg (z! — ) = 1 — 3ylyk, (' — x), by expressing the loss as

R(ky) = R< E hi)

w~p
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= E R(h),

w~p

with h!,(x) = cos(w - (z! — x)).

Theorem 5 (Theorem 1 from |Letarte et al|[2019]). For s > 0, Vi € {1,...,m}, and a prior
distribution p over R%, with probability 1 — & over the random choice of S ~ D™, we have
Vg € R%:

~ 1 52 1
< E ¢ | K1, P

where KL(q|lp) = Ewnp é% 1s the Kullback-Leibler divergence between q and p.

We note that the result also stands for any [0, 1]-valued convex loss ¢. Indeed, by Jensen’s

inequality, we have

R(kg) = R( E hL) < E R(A.).

As described in Section this bound is interesting because there exists a closed form
solution minimizing it (see Germain et al. [2009] and Letarte et al. [2019]) and computed in

this setting as
. 1 — B/ =
Vje{l.. K} )= exp (m >oe(nL, (@) ) (3.3)

with 8 > 0 a parameter to tune and Z! a normalization constant such that ZjK:l g;=1.

The proposed method of Letarte et al.|[2019] consists in a first step to learn a representation
of the input space of np, features where each new feature Vt € {1,...,np} is computed using the
kernel kq: computed according to Equations and with the landmark (x?,y'). To do
so, they consider a set of ny, landmarks L = {(«, yt)}?il which they choose either as randomly
from the training set, or as the centers of a clustering of the training set. Then, during a second
step, a (linear) predictor can be learned from the new representation.

It is worth noticing that this kind of procedure exhibits two limitations. First, the model can
be optimized only after having learned the representation. Second, the landmarks have to be
fixed before learning the representation. Thus, the constructed representation is not guaranteed
to be compact and relevant for the learning algorithm considered. To tackle these issues, we
propose in the following a strategy that performs both steps at the same time through a gradient

boosting process that allows to jointly learn the set of landmarks and the final predictor.

3.4 Gradient boosting random Fourier features

The approach we propose follows the widely used gradient boosting framework first introduced
by [Friedman| [2001]. We briefly recall it below.
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Algorithm 3.1: Gradient boosting [Friedman, 2001]
Inputs : Training set S = {(acl, yl)}Zv Loss £; Number of iterations T’
Output: sign (Ho(zc) +3r, athat(az)>
1 Vie{l,...,m} H°(z;) =argmin, > ", L(yi,p)
2. forte{1,...,T} do

ol (ys, H 1 (;))
OH'"1(x;)

4 a'=argming > 1", (%5 — ha(zci))2

5. o' =argming Y1t £(ys, H (@) + athae (2;))

6

7

32 Vied{l,....m} @i=-—

Vie{l,....,m} Hi(z;) = H"(x;) + alhg(x;)

. end for

3.4.1 Gradient boosting in a nutshell

Gradient boosting is an ensemble method that aims at learning a weighted majority vote over
an ensemble of T" weak predictors in a greedy way by learning one classifier per iteration. The

final majority vote is of the form
T
Va € R%, sign (Ho(m) + Zathat (m)) ,
t=1

where HY is an initial classifier fixed before the iterative process (usually set such that it returns
the same value for every example), and o' is the weight associated to the predictor hy: and
is learned at the same time as the parameters a’ of that classifier. Given a differentiable loss
£, the objective of the gradient boosting algorithm is to perform a gradient descent where the
variable to be optimized is the ensemble and the function to be minimized is the empirical
loss. The pseudo-code of gradient boosting is reported in Algorithm First, the ensemble is
constituted by only one predictor: the one that outputs a constant value minimizing the loss
over the whole training set (line 1). Then at each iteration, the algorithm computes for each
training example the negative gradient of the loss (line 3), also called the residual and denoted
by ;- The next step consists in optimizing the parameters of the predictor h,: that fits the
best the residuals (line 4), before learning the optimal step size o that minimizes the loss by
adding h,:, weighted by af, to the current vote (line 5). Finally, the model is updated by
adding alhg:(-) (line 6) to the vote.

3.4.2 Gradient boosting with random Fourier features

Our main contribution takes the form of a learning algorithm which jointly optimizes a compact
representation of the data and the model. Our method, called GBRFF1, leverages both
Gradient Boosting and RFF. We describe its pseudo-code in Algorithm which follows the
steps of Algorithm The loss function £ at the core of our algorithm is the exponential loss

E(HT) = %Zexp(—yiHT(mi)). (3.4)
i=1
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Algorithm 3.2: GBRFF1
Inputs : Training set S = {(ml, yl)}ZP Number of iterations T

K number of random features; Parameters + and
Output: sign (Ho(x) +3F o Z]KZI ¢ cos (W) - (2" — az)))

1
L 25 Y

1:Vie{l,...,m} H%z)=1ln
(hroom) ) =3

2: forte{1,...,7} do
3 Vie{l,...,m} w;=exp(—y;H(x;))
4 Vie{l,...,m} @ =yw
5 Vje{l,...,K}, draw wh ~ N(0,27)*
t

1
6: a'=argmin —) ;" exp ( e Z]  cos(wh - (@ — a:z)))
xzeRd M

7. Vie{l,...,K} q] Ztexp( ﬁle 1exp<—gicos(wjo(;ct—:ci)))>

~

m <1+y1 25{:1 q; cos ( ; (mt—@)))wi
> (1 —Yi Zf;l qj. cos (c.uz(wt—:vb)))wZ
9 Vie{l,...,m} H(z;) = H (@) + o' I gl cos (! - (2! — )
10: end for

8: at:%n

We show in Figure the intuition on why the exponential loss is more adapted to binary
classification tasks compared to the usually used least square loss in Gradient Boosting algo-
rithms [Friedman, 2001]. Given ¢ as the exponential loss, line 1 of Algorithm amounts to

setting the initial learner as

1, 1+25
177 j= lyJ

6£(yi, Htil(wi))
OH!'"1(x;)
of Algorithm tends to learn a weak learner that outputs exactly the residuals’ values by

(3.5)

= y; exp ( — yth_l(a:i)). Line 4

The residuals of line 3 are defined as §; = —

minimizing the squared loss; but, this is not well suited in our setting with the exponential loss
(Equation (3.4)). To benefit from the exponential decrease of the loss, we are rather interested
in weak learners that output predictions having a large absolute value and being of the same
sign as the residuals. Thus, we aim at favoring parameter values minimizing the exponential

loss between the residuals and the predictions of the weak learner as follows:

al = arg min — Z exp giha(wi)). (3.6)
=1

Following the RFF principle, we can now define our weak learner as

hat (x;) qu cos (! — wl)) , (3.7)
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Least Square Loss Exponential Loss

Iteration 10

Iteration 100

Iteration 1000

-58.5

Figure 3.1: Predicted values by our proposed method depending on the loss function used. The
least square loss (left) is more adapted for regressions tasks as it encourages to predict exactly the
true labels —1 and +1. On the right, the exponential loss is more adapted to binary classification
tasks because it encourages to have predictions with the same sign as the true labels, resulting

mn a decision boundary with a larger margin to the examples.

K

where its parameters are given by at:({wz- =1 x!,q'). Instead of using a pre-defined set of

landmarks [Letarte et al., [2019], we build this set iteratively, i.e., we learn one landmark per

iteration. To benefit from the closed form of Equation , we propose the following greedy
approach to learn the parameters a’. At each iteration ¢, we draw K vectors {w? JKzlwpK with
p the Fourier transform of a given kernel (as defined in Equation ); then we look for the
optimal landmark a!. Plugging Equation into Equation and assuming a uniform

prior distribution over the random features, ! is learned to minimize

xR

m K
x' = argmin f(x) = % Zexp ( — g}i% Zcos(w§ (x— wz))) (3.8)
i=1 j=1

Even if this problem is non-convex due to the cosine function, we can still compute its derivative

and perform a gradient descent to find a possible solution. The partial derivative of Equa-
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tion (3.8]) with respect to x is given by

af 1 & u o
)= e O | ¢ 2o 5w - (@—i)) | exp —*ZCOS (i) zgwj‘
p

=1 7=1

s

According to Letarte et al.| [2019], given the landmark x! found by gradient descent, we can

now compute the weights of the random features q° as

. 1 —Bv/m & ~ t t
Vie{l,...,K}, q] 71X | — Zexp ( — i cos (wh - (x' — a:z))> , (3.9)
i=1
with 8 > 0 a parameter to tune and Z* the normalization constant.
The last step concerns the step size al. It is computed so as to minimize the combination

of the current model H*~! with the weak learner A, i.e.,

a :argminZexp [—yi(Ht_l(a:i)+aht(a:i))]
¢ =l

=arg min Z w; exp [—yiaht(ar;i)] ,
Y =1
where w; = exp(—y; H"(;)). In order to have a closed-form solution of c, we use the convexity
of the above quantity and the fact that hi(x;) € [—1,1] to bound the loss function to optimize.
Indeed, we get

11 yiht(x;) 1+y;ht(x;)
¢
E wzexp — yiah (ml < 2 [2 wj exp(a)+ E — | Wi exp(—a).

This upper bound is strictly convex. Its minimum o! can be found by setting to 0 the derivative

w.r.t. a of the right-hand side of the previous equation. We get

i(l—wgw)m oot

=1

B SYEEC) P

=1

2y (1 yz‘ht(wz‘))wz‘>
>oimq (1 + il (2))w;
The same derivation can be used to find the initial predictor H°.

As usually done in the RFF literature [Agrawal et al., |2019} [Rahimi and Recht|, 2008, [Sinha
and Duchi, 2016 we use the RBF kernel defined as k- (z, ') = exp(—v||z — z'||?) with as Fourier

1
for which the solution is given by of = 3 In <

transform vectors of d numbers each drawn from the normal law with zero mean and variance

2+ that we denote N(0,27)<.

3.4.3 Refining GBRFF1

In GBRFF1, the number of random features K used at each iteration has a direct impact

on the computation time of the algorithm. Moreover w' is drawn according to the Fourier
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Algorithm 3.3: GBRFF2

Inputs : Training set S = {(ml, Yi } 1> Number of iterations T’

Parameters v and A
Output: sign (Ho(w) +3°7 atcos (wh-x — bt)>
1
. I+ Yy
1:Vie{l,...,m} HOx;)=1ln—m=i=t?
{ } ( Z> 2 1*% Z;n:1 Yj
2: forte{1,...,7} do
Vie{l,....,m} w; =exp(—y;H'"!(x;))

4: ViE{l,...,m} Ui = Y W;
5. Draw w ~ N(0,27)¢
6: b =argmin = > 7" exp ( — {J; cos (w X — b)))

be[—m,m)
7. w'=argmin A|w|3+ L 3" exp ( — §; COS (w cxp — bt))).

weRd
™, | 14y cos (wt-x; —b? )wi

8 al = %ln = ( ( )

O
9 Vie{l,...,m} H'(z;) = Ht_l(ﬁci) + ol cos (wt STy — bt)
10: end for

transform of the RBF kernel and thus is not learned. The second part of our contribution is to
propose two refinements. First, we bring to light the fact that one can drastically reduce the
complexity of GBRFF1 by learning a rough approximation of the kernel, yet much simpler
and still very effective, using K'=1. In this scenario, we show that learning the landmarks boils
down to finding a single real number in [—7, 7]. Then, to speed up the convergence of the algo-
rithm, we suggest to optimize w' after a random initialization from the Fourier transform. We
show that a simple gradient descent with respect to this parameter allows a faster convergence

with better performance. These two improvements lead to a variant of our original algorithm,
called GBRFF2 and presented in Algorithm

Cheaper landmark learning using the periodicity of the cosine. As we set K=1, the

weak learner h,: () is now simply defined as
hat(x) = cos (w' - (2" — x)),

where its parameters are given by a' = (w’,x'). This formulation allows us to eliminate the
dependence on the hyper-parameter K. Moreover, one can also get rid of 8, because learning
the weights q' (line 7 of Algorithm is no more necessary. Instead, since K=1, we can see
o' learned at each iteration as a surrogate of these weights. As our weak learner is based on
a single random feature, the objective function (line 6) to learn the landmark at iteration ¢

becomes

x' = argmin f,(x Zexp ( g cos(w' - (x — acz))>

R4
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Let ¢ € {1,...,d} be the index of the c-th coordinate of the landmark z'. We can rewrite the

objective function as

Jot (mt) =

3=

s
Il
N

exp ( — Y; COS (wt-:vt—wt-:cl-) )

I
3|~
s

exp( yzcosw —i—wa—w mz)
1 jF#c

-
Il

We leverage the periodicity of the cosine function along each direction to find the optimal

th T T

" coordinate of the landmark z! € [=F, %] that minimizes f,¢(x') by fixing all the other
coordinates. Figure illustrates this pﬁengmenon on the two-moons dataset when applying
GBRFF1 with K=1. The plots in the first row show the periodicity of the loss represented as
repeating diagonal green/yellow stripes (light yellow is associated to the smallest loss). There
is an infinite number of landmarks giving such a minimal loss at the middle of the yellow
stripes. Thus, by setting one coordinate of the landmark to an arbitrary value, the algorithm
is still able at any iteration to find along the second coordinate a value that minimizes the loss
(the resulting landmark at the current iteration is depicted by a white cross). The second row
shows that such a strategy allows us to get an accuracy of 100% on this toy dataset after 10

iterations. By generalizing this, instead of learning a landmark vector ! € R?, we fix all but

one coordinate of the landmark to 0, and then learn a single scalar b* € [—m, 7] that minimizes
fut (b)) = Z exp (— g cos(w' - ; — b')).

Learning w' for faster convergence. The second refinement concerns the randomness of the
RFF due to vector w'. So far, the latter was drawn according to p and then used to learn b'.
We suggest instead to fine-tune w! by doing a gradient descent with as initialization the vector
drawn from p. Supported by the experiments performed in the following, we claim that such a
strategy allows us to both speed up the convergence of the algorithm and boost the accuracy.
This update requires to add a line of code, just after line 6 of Algorithm expressed as a

regularized optimization problem:

1 m
w! = arg min\||w|? + — Zexp (— gicos(w - z; — b)),
weRd m -

its derivative being

fu

1 m
S (w) =2 w + p- Zwigji sin(w - @; — b') exp ( — i cos(w - @; — b')).

=1

3.5 Experimental evaluation

The objective of this section is three-fold: first, we aim to bring to light the interest of learning

the landmarks rather than fixing them as done in [Letarte et al. [2019]; second we study the
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Loss f,, depending on landmark positions

Iteration 5 Iteration 10

Iteration 1 17 13

g2

® Training points

1.0
Overall decision boundary.
Accuracy: 95.0%

+ Previous landmarks

Figure 8.2: GBRFF1 with K=1 on the two-moons dataset at different iterations. Top row
shows the periodicity of the loss (light yellow indicates the minimal loss). Bottom row shows the
resulting decision boundaries between the classes (blue & red) by fixing arbitrarily one coordinate

of the landmark and minimizing the loss along the other one.

impact of the number K of random features; lastly, we perform an extensive experimental
comparison of our algorithms. The Python code of all experiments and the data used are
publicly availabld']

3.5.1 Setting

2,...,2}

For GBRFF1 and GBRFF2, we select by cross-validation the hyper-parameter v € ﬁ%.
For GBRFF2, we also tune A € {0, 2{_5""7_2}}. We compare our two methods with the
following algorithms.

e LGBM |[Ke et all 2017| is a state-of-the-art gradient boosting method using trees as base

predictors. We select by cross-validation the maximum tree depth in {1,...,10} and the L2
regularization parameter A € {0, 2{_5""’_2}}.
¢ BMKR [Wu et al., 2017] is a Multiple Kernel Learning method based on gradient boosting

with least square loss. It selects at each iteration the best kernel plugged inside an SVR to fit
the residuals among 10 RBF kernels with v € 28=%--5} and the linear kernel k(x,z') = "z,
The SVR algorithm is a direct adaptation of the kernelized SVM algorithm described in Section
but where the label to predict is a real number in SVR instead of a class in SVM. We

select by cross-validation the SVR parameter C' € 10{~2-2},

e GFC |Oglic and Gértner|, 2016] is a greedy feature construction method based on functional

gradient descent. It iteratively refines the representation learned by adding a feature that

'The code is available here: https://leogautheron.github.io
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Table 3.1:  Description of the datasets (n: number of examples, d: number of features, c:

number of classes) and the classes chosen as negative (-1) and positive (+1).

Name m d c Label -1 Label +1 Name m d c Label -1 Label +1
wine 178 13 3 2,3 1 australian 690 14 2 0 1
sonar 208 60 2 M R pima 768 8 2 0 1
newthyroid 215 5 3 1 2, 3 vehicule 846 18 4 van bus, opel, saab
heart 270 13 2 1 2 german 1000 23 2 1 2
bupa 345 6 2 2 1 splice 3175 60 2 +1 -1
iono 351 34 2 g b spambase 4597 57 2 0 1
wdbc 569 30 2 B M occupancy 20560 5 2 0 1
balance 625 4 3 B, R L bankmarketing 45211 51 2 no yes

matches the residual function defined for the least squared loss. We use the final representation
to learn a linear SVM where C' € 101=2-2} is selected by cross-validation.

e PBRFF |Letarte et al. 2019] described in Section that (1) draws with replacement np,
landmarks from the training set; (2) learns a representation of ny, features where each feature is
computed using Equation based on K=10 vectors drawn like our methods from N(0, 27)%;
(3) learns a linear SVM on the new representation. We select by cross-validation its parameters
v E w, B € 10822} and the SVM parameter C € 10{-2-2},

We consider 16 datasets coming mainly from the UCI repository that we binarized as de-
scribed in Table Note that, we generate for each dataset 20 random 70%/30% train/test
splits. Most of them (except occupancy and bankmarketing) are made of a small number of
training examples, one of our objective being to show the efficiency of our method in such a
scenario. Datasets are pre-processed such that each feature in the training set has 0 mean and
unit variance; the factors computed on the training set are then used to scale each feature in the
test set. All parameters are tuned by 5-fold cross-validation on the training set by performing
a grid search.

Compared to the baseline method PBRFF, our two proposed methods GBRFF1 and
GBRFF?2 rely on different strategies in order to obtain an effective and efficient classifier. In
the following, we propose different experiments that give some insights on the impact of the

strategies used on both the classification accuracy and the computation time.

3.5.2 The importance of learning the landmarks in GBRFF1

Our method GBRFF1 is based on PBRFF but is different in two points: (3) it learns the model
at the same time as the representation instead of first learning the representation and then the
model and (74) it learns the landmarks used to build the representation instead of selecting them
randomly from the training set. We compare these two methods to a variant called GBRFFO0.5
which is identical to GBRFF1 except that we do not learn the landmarks in this variant, but
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we select them randomly as done in PBRFF. Figure compares these three methods. We
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Figure 3.8: Mean accuracy (left) and sum of computation time using the best parameters found
with cross-validation (right) over 20 train/test splits and over the 15 first datasets (except
“bankmarketing”) for the three methods PBRFF, GBRFF0.5 and GBRFF1 using from 1
to 50 landmarks.

see that GBRFFO0.5 is faster than PBRFF but that it also leads to a lower accuracy. Thus,
simply adapting the two step learning method of PBRFF in the one step learning method
GBRFFO0.5 degrades the performances while slightly decreasing the computation time. These
lower performances might come from the boosting classifier which is less effective than the SVM
classifier in this setting. However, when comparing GBRFF0.5 and GBRFF1, we observe
that learning the landmarks allows to improve the accuracy which becomes better than the one
obtained by PBRFF, but at the price of an increase of the computation time which becomes
superior than both GBRFF0.5 and PBRFF. These promising results in terms of accuracies
motivate us to improve the learning strategy of the landmarks in GBRFF1 to make it more

efficient.

3.5.3 Improving the efficiency of GBRFF1

A key element of both PBRFF and GBRFF1 is K, the amount of random features used for
each landmark. We compare the performances and computation time of GBRFF1 when using
different numbers of random features per landmark. The results of this experiment are reported
in Figure 3.4l As expected, the accuracy is better using more random features per landmark,
but requiring of an increasingly higher computation time. It seems that the higher the amount
of random features is, the smaller the gain is in accuracy but the higher the addition to the
computation time is. To illustrate this, we present in Figure the accuracy divided by the
computation time. The results show that GBRFF1 with K = 1 presents the best compromise
accuracy /computation time, meaning that even if for a fixed amount of landmarks 7" we can

obtain better performances with a large value of K, it is more interesting to set K = 1 and use
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Figure 3.4: Mean accuracy (left) and sum of computation time using the best parameters found
with cross-validation (right) over 20 train/test splits and over the 15 first datasets (except the
largest dataset “bankmarketing”) for GBRFF1 with K € {1,5,10,20} random fealures used per

landmark using from 1 to 50 landmarks.

a large amount of landmarks T to obtain similar performances in less time. This behavior is
confirmed by the results presented in Figure [3.6] showing that for different values of T' x K, we
need to set K =1 and use a large value of T to obtain the best accuracy. To understand why
it is better to use a small amount K of random features per landmark, but a large amount of
landmarks 7', we remind the formula of the final predictor of GBRFF1 for a given example x
which is

T K

sign | H(x) + Zat Zq§ cos (W} - (z' — x))

but that simplifies when K =1 to
T
sign (Ho(w) + Zat cos (w' - (z' — w))) .
t=1

At a given iteration ¢, the objective is to learn the landmark !, the boosting weight o and the
random feature weights g’ that fit well the residuals defined by the exponential loss. Conse-
quently, if K increases, so does the amount of constraints imposed at a given iteration to learn
the landmark and the boosting weight. A possible explanation is that when K = 1, it is simpler
to find a landmark and a weight o that correctly fit the residuals because both of them are
less constrained. On the other hand, when using a large amount of random features, there is
no possible solution that fits well the residuals under the constraints imposed by the random
features.

The results presented motivate us to build upon GBRFF1 using the smallest possible

amount of random feature K = 1 per landmark.
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Figure 8.5: Mean accuracy divided by sum of computation time using the best parameters learned
with cross-validation for GBRFF1 with K € {1,5,10,20} random feature used per landmark
using from 1 to 50 landmarks over 20 train/test splits and over the 15 first datasets (except the

largest dataset “bankmarketing”).

3.5.4 From GBRFF1 to GBRFF2

Our proposed method GBRFF2 is different from GBRFF1 as (i) it uses a unique random
feature per landmark and because (i) the random part of the random feature w is learned
instead of fixed randomly. We introduce a variant called GBRFF1.5 identical to GBRFF2
except for w which is not learned but remains fixed randomly. This variant is different from
GBRFF1 because the use of a unique random feature allows to learn a single scalar instead
of a landmark vector to obtain the same model as GBRFF1 with K = 1 more efficiently.
The comparison in Figure between GBRFF1 with K = 1 and GBRFF1.5 shows as
expected that the two methods lead exactly to the same performances but with a much smaller
computation time for GBRFF1.5. This confirms that when using a unique random feature, it

is equivalent to learn a single scalar in [—, 7] and a landmark vector in R, and this is much

faster.

On the other hand, GBRFF2 gives better performances than GBRFF1.5, especially with
a very small amount of landmarks, but with a larger of the computation time. Compared with
GBRFF1, GBRFF2 is faster for K > 1 or as fast for K = 1, and GBRFF2 also achieves

higher performances, even when using K = 20 random features for GBRFF1.
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Figure 3.6: Mean results over the 16 datasets w.r.t. the same total amount of random features

TxK for K € {1,5,10,20}, with T the amount of boosting iterations.
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Figure 3.7: Mean accuracy (left) and sum of computation time using the best parameters found
with cross-validation (right) over 20 train/test splits and over the 15 first datasets (except the
largest dataset “bankmarketing”) for GBRFF1, GBRFF1.5 and GBRFF2 using from 1 to
50 landmarks.

3.5.5 Influence of learning the landmarks

We present in Figure B.§| the behavior of the three methods that make use of landmarks and
RFF, that is PBRFF, GBRFF1 and GBRFF2. With more than 25 landmarks, PBRFF and
GBRFF1 show similar mean accuracy and reach about 87.5% after 50 iterations. However,
for a small set of landmarks (in particular smaller than 25) GBRFF1 is consistently supe-
rior by about 1 point higher than PBRFF, showing the interest of learning the landmarks.
But the certainly most striking result comes from the performance of our variant GBRFF2
which outperforms the two competing methods. This is particularly true for a small amount
of landmarks. Notice that GBRFF2 is able to reach its maximum with about 20 landmarks,
while GBRFF1 and PBRFF require more iterations without reaching the same performance.
This definitely shows the benefit of learning the random features compared to drawing them

randomly.
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Figure 3.8: Mean test accuracy over 20 train/test splits over the 16 datasets. We train the three

methods using from 1 to 50 landmarks.

3.5.6 Influence of the number of examples on the computation time

The specificities of GBRFF2 come from the number of random features K set to 1 at each
iteration and the learning of w’. We have already shown in Figure that this allows us to get
better results. We study in this section how GBRFF2 scales compared to the other methods.
To do so, we consider artificial datasets with an increasing number of examples (generated with
scikit-learn [Pedregosa et al., [2011] library’s make_classification function). The initial size
is set to 150 examples, and we successively generate datasets with a size equal to the previous
dataset size multiplied by 1.5. Here, we do not split the datasets in train and test as we are
not interested in the accuracy. We report the time in seconds necessary to train the models
and to predict the labels on the whole datasets. The parameters are fixed as follows: C' =1
for the methods using SVM or SVR; the tree depth is set to 5 for LGBM; K = 10, v = é,
and 8 =1 for PBRFF and GBRFF1; v = é and A = 0 for GBRFF2. All the methods are
run with 100 iterations (or landmarks) and are not run on datasets requiring more than 1000
seconds of execution time (because larger datasets requiring more than 1000 seconds by the
fastest method do not fit in the RAM memory of the computer used for the experiments). We
report the results in Figure|3.9

We first recall that GBRFF2 learns at each iteration a random feature and a landmark while
GBRFF1 only learns the landmark and PBRFF draws them randomly. Thus, GBRFF1
should present higher computation times compared to PBRFF. However, for datasets with a
number of examples larger than 20,000, GBRFF1 becomes cheaper than PBRFF. This is
due to the fact that the SVM classifier learned by PBRFF does not scale as well as gradient
boosting-based methods. The two-step method GFC is in addition also slower than GBRFF1.
This shows the computational advantage of having a one-step procedure to learn both the
representation and the final classifier. When looking at the time limit of 1000 seconds, both
GBRFF1 and GBRFF2 are the fastest kernel-based methods compared to BMKR, GFC
and PBRFF. This shows the efficiency of learning kernels in a greedy fashion. We also see that
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Figure 3.9: Computation time in seconds required to train and test the siz methods with fized
parameters on an artificial dataset having an increasing number of examples. The whole dataset
is used for training and testing, and a method requiring more than 1000 seconds at a given step

s not trained on the larger datasets.

GBRFF2 performs faster than GBRFF1 for any number of examples. At the limit of 1000
seconds, it is able to deal with datasets that are 10 times larger than GBRFF1, due to the
lower complexity of the learned weak learner used in GBRFF2. Finally, GBRFF2 is globally
the second-fastest method behind the gradient boosting method LGBM that uses trees as base

classifiers.

3.5.7 Performance comparison between all methods

Tablepresents for each dataset the mean results over the 20 splits using 100 iterations/landmarks
for each method. Due to the size of the dataset “bankmarketing”, we do not report the results of
the algorithms that do not converge in time for this dataset, and we compute the average ranks
and mean results over the other 15 datasets. In terms of accuracy, GBRFF2 shows very good
results compared with the state-of-the-art as it obtains the best average rank among the six
methods and on average the best mean accuracy leaving apart “bankmarketing”. Interestingly,
our method is the only kernel-based one that scales well enough to be applied to this latter

dataset.

3.5.8 GBRFF2 is able to learn complex decision boundaries that generalizes

well on small datasets

In this last experiment, we focus on LGBM and GBRFF2 which have been shown to be
the two best performing methods in terms of accuracy and execution time. Even if BMKR is
among the three best methods in terms of accuracy, we do not consider it for this experiment due
to its poor execution time. Learning a classifier based on non-linear kernels through GBRFF2
has the advantage of being able to capture non-linear decision surfaces, whereas LGBM is
not well suited for this because it uses trees as base learner. To illustrate this advantage, we

consider three synthetics 2D datasets with non-linearly separable classes. The first one, called
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Table 3.2: Mean test accuracy £+ standard deviation over 20 random train/test splits. A -’ in
the last row indicates that the algorithm did not converge in time on this dataset. Average ranks

and mean results are computed over the first 15 datasets.

Dataset BMKR GFC PBRFF GBRFF1 LGBM GBRFF2
wine 99.5 +1.0 99311 98.1 £ 2.1 983 +£15 96.6 £ 3.2 98.5 £ 1.6
sonar 788 £ 7.2 76.6 £ 3.2 76.7 £ 5.2 81.8 £35 824 £43 83.0 £ 5.0
newthyroid 96.5 £ 1.7 96.5 £ 2.1 96.5 £ 1.5 953 £22 94.8 £29 96.9 + 2.1
heart 85.6 + 4.0 794 £ 45 854 £ 3.5 83.6 £4.0 83.0 £3.5 83.1 £4.0
bupa 68.1 £ 4.9 64.7 £ 3.2 69.0 £ 4.2 70.3 £4.9 72.0 £+ 3.3 712+ 45
iono 94.2+14 915 +23 942 £ 1.8 88.2 £2.3 93.3 £25 89.2 + 2.1
wdbc 96.1 £ 1.2 95.8 £ 1.3 96.5 £ 1.1 96.8 £ 1.1 958 £ 1.5 97.3 £ 1.2
balance 96.0 £ 1.2 951 £2.0 98911 97.7 £ 0.7 93.5 £ 2.6 97.7 £ 0.6
australian 85.9 £ 2.0 80.9 £24 84.6 £ 2.3 86.7 £ 1.7 85.5 £ 1.9 86.9 +1.9
pima 764 £ 2.0 68.7 £ 2.6 76.1 £ 25 76.5 + 2.7 75.5 £ 2.7 77.1 +£25
vehicle 96.6 £ 1.3 95.9 £ 0.8 96.5 £ 1.4 96.3 £ 1.2 96.7 £ 1.0 97.1+ 1.0
german 723 £ 18 64.3 £ 2.8 724 +14 73.7+£ 1.6 73.5 £ 1.7 74.0 £ 1.3
splice 875 £ 1.0 87.0 £ 1.0 83.5 £ 0.7 839 £1.1 97.0 £ 0.5 924 £ 0.8
spambase 93.5 £ 04 91.3 £ 0.6 91.6 £ 0.7 90.7 £ 0.7 95.6 £04 928 £ 0.6
occupancy 99.3 £ 0.1 98.9 £ 0.7 98.9 £0.1 98.8 £ 0.1 99.3 £ 0.1 98.9 £ 0.1
Mean 88.4 £+ 2.1 85.7 £ 2.0 87.9 £ 2.0 87.9 £ 2.0 89.0 £ 2.1 89.1 + 2.0
Average Rank 2.88 4.94 3.75 3.81 3.44 2.19

bankmarketing - - - 89.7 £ 0.2 90.8 £ 0.2 90.0 £ 0.2

“swiss”, represents two spirals of two classes side by side. The second one, namely “circles”,
consists of four circles with the same center and an increasing radius by alternating the class
of each circle. The third dataset, called “board”, consists of a four by four checkerboard with
alternating classes in each cell. Here, both LGBM and GBRFF2 are run for 1000 iterations
to ensure their convergence and parameters are tuned by cross-validation as previously.
Figure gives evidence that GBRFF2 is able to achieve much better results than
LGBM when using only a small amount of training examples, 4.e., 500 or less. Furthermore, if
we look at the decision boundaries and their associated performances at train and test time, we
can see that LGBM is prone to overfit the training data compared to our approach, showing
a drastic drop in performance between learning and testing. The learned decision boundaries
are also smoother with GBRRF2 than with LGBM. These experiments show the advantage

of having a non-linear weak learner in a gradient boosting approach.

3.6 Conclusion and perspectives

In this chapter, we take advantages of two machine learning approaches, gradient boosting and

random Fourier features, to derive a novel algorithm that jointly learns a compact representation
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Figure 3.10: Comparison of LGBM and GBRFF2 on three synthetic datasets in terms of
classification accuracy and decision boundaries (upper part of the figure) and in terms of per-

formance w.r.t. the number of examples (last row of plots).

and a model based on random features. Building on the recent work by [Letarte et al.| [2019],

we learn a kernel by approximating it as a weighted sum of RFF [Rahimi and Recht, 2008].

The originality is that we learn such kernels so that the representation and the classifier are
jointly optimized. We show that we can benefit from a performance boost in terms of accuracy
and computation time by considering each weak learner as a single trigonometric feature and
learning the random part of the RFF. The experimental study shows the competitiveness of our

method with state-of-the-art boosting and kernel learning methods. In particular, our method
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is able to learn non-linear decision boundaries which generalize well in the presence of few
labeled examples.

The optimization of the random feature and of the landmark at each iteration can be
computationally expensive when the number of iterations is large. A promising future line
of research to speed-up the learning is to derive other kernel approximations where these two
parameters can be computed with a closed-form solution. Other perspectives regarding the
scalability include the use of standard gradient boosting tricks [Ke et al., [2017] such as sampling

or learning the kernels in parallel.
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Chapter 4

Representations Learning for

Unsupervised Domain Adaptation

This chapter is based on the following publication

Léo Gautheron, Ievgen Redko and Carole Lartizien. Feature Selection for Unsupervised Do-
main Adaptation using Optimal Transport. In European Conference on Machine Learning &
Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2018, Dublin,
Ireland |Gautheron et al., 2018b)].

Abstract

In this chapter, we address the difficult problem of unsupervised domain adaptation
where the learner does not benefit from any label of the target domain. We build upon
a recent theoretical analysis of optimal transport in domain adaptation and show that it
can directly suggest a feature selection procedure leveraging the shift between the source
and target domains. We propose a novel algorithm that aims to sort features by their
similarity across the domains, where the order is obtained by analyzing the coupling matrix
representing the solution of the proposed optimal transportation problem. We evaluate
our method on a well-known benchmark dataset and illustrate its capability of selecting
correlated features leading to better classification performances. Furthermore, we show
that the proposed algorithm can be used as a pre-processing step for existing domain
adaptation techniques ensuring an important speed-up in terms of the computational time
while maintaining comparable results. Finally, we validate our algorithm on clinical imaging

databases for computer-aided diagnosis task with promising results.

4.1 Introduction

The majority of well-known machine learning algorithms used in real-world applications are
built upon the common strategy often known as empirical risk minimization, as described in

Chapter This strategy suggests that a classifier that minimizes the loss over the observed
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dataset is expected to generalize and thus to perform well on any other example coming from
the same probability distribution. However, this assumption is often violated in practice where
a dataset may be different from new unseen data collected afterwards. For instance, one may
consider a computer aided diagnostic system developed to detect a specific disease in patients.
It is quite intuitive to suggest that the data collected on a set of patients at a certain hospital
to build the system will present differences with the data collected at another hospital due to
the differences in the acquisition process and on the different population of patients. Even if
the system may produce good detection results in the first hospital where it was developed, it
might present poor detection performance for the other hospital because of the differences in
the data between the two hospitals. In this Chapter, we are interested in this problem where the
training set has enough data to build a model, but where the test set as only a few or even no
labels. In this setting, we must rely on the data from the training set to build a model deployed
on the test set, which may fail on the test because the data are acquired in different conditions
between the two domains. In order to tackle this problem, a learning paradigm called domain

adaptation was proposed by Ben-David et al.|[2007].

The main goal of domain adaptation is to provide methodological frameworks and algorithms
that allow to reuse a classifier learned in one area, usually called source domain, in a different yet
similar area usually called target domain. According to the domain adaptation theory presented
in |[Ben-David et al., 2007, 2010] (see also Redko et al.| [2019] for a survey), the efficiency of
a given adaptation algorithm depends on its capacity to reduce the discrepancy between the
probability distributions of the considered source and target datasets and on the existence of a
good hypothesis (or classifier) that can minimize both source and target error functions. While
finding this optimal hypothesis is a very difficult problem, most domain adaptation algorithms
concentrate solely on reducing the discrepancy between two domains based on the observed
examples. To this end, several papers [Uguroglu and Carbonell, 2011, Persello and Bruzzone,
2015, [Li et al., 2016} Yin et al., 2017| proposed to solve the domain adaptation problem by
addressing it as a feature selection task. Indeed, for the general adaptation scenario, it is
reasonable to assume that the shift between the source and target domains may be caused by
a changing behavior of a subset of features that characterize the data in both domains. In
this case, identifying these features can help to reduce the discrepancy between the source and

target domains and to allow efficient adaptation.

In this chapter, we propose to learn a joint representation between the source and target
through the lens of a feature selection algorithm. Dedicated to deal with the for unsupervised
domain adaptation setting, our algorithm allows to rank features based on their similarity across
the source and target domains. Our key underlying idea is to solve the optimal transportation
problem (recalled in Section between the marginal distributions of features in the two
domains in order to obtain a coupling matrix given by their joint probability distribution. The
goal, then, is to use this coupling matrix to identify the most correlated features by analyzing

the diagonal of the coupling matrix where higher coupling values indicate strong correlations
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between the source and target features. Contrary to the state-of-the-art methods that proceed
by learning a new richer feature representation before identifying the invariant features, our
method performs feature selection directly in the input space. This choice leads to more inter-
pretable results and to a better understanding of the adaptation phenomenon as transformed
features cannot directly point out to those descriptors that vary between the two domains. Fur-
thermore, the shifted features identified by our method can be eliminated in order to speed-up
domain adaptation algorithms whose running time often inherently depends on the dimension-
ality of the input data. This latter point is quite important as domain adaptation algorithms
are often deployed for high-dimensional data arising from computer vision applications.
Despite its advantages, our method does not aim to outperform the state-of-the-art clas-
sification results obtained by powerful feature transformation domain adaptation methods as
most of them use a very rich class of mappings to find a new data representation. To this
end, the foremost goal of this chapter is to show that the proposed feature selection method is
not a competitor of the state-of-the-art algorithms but is a complementary tool that provides
important benefits both in terms of computational efficiency and better understanding of data.
All the results presented in our chapter are given in order to illustrate this rather than its

superiority in terms of classification accuracy.

Organization of the chapter. In Section we present a short state-of-the-art on feature
selection methods in domain adaptation. Section is devoted to the introduction of basic
elements related to the optimal transportation theory that are used later. In Section we
show how a theoretical analysis of domain adaptation with optimal transport can be used
to derive a new adaptation algorithm based on feature selection. Based on this, we describe
the proposed method and the details of its algorithmic implementation. Section presents
experimental evaluations of the proposed method on both a benchmark computer vision dataset
and a clinical imaging database for computer-aided diagnosis task. Section summarizes our
chapter by outlining its main contributions and giving the possible future perspectives of this

work.

4.2 Related work

As classical feature selection methods |[Guyon and Elisseeff, 2003| are not designed to work
well under the assumption of distribution’s shift, several methods were specifically proposed
in the literature for feature selection in the context of domain adaptation. For instance, in
[Li et al., |2016|, the authors search a latent low-dimensional subspace for two domains by
jointly preserving the data structure and by selecting a subset of the latent features through
a row-sparsity inducing regularization. While being quite effective in terms of classification
results, this method, however, has two important drawbacks. First, it does not identify the
original features that contribute to efficient adaptation but rather learns their embedding where

the distributions’ discrepancy is minimized. Second, its optimization procedure makes use of
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eigenvalue decomposition which has a high computational cost in large-scale applications. In
[Yin et al., 2017], the authors learn a least squares SVM in order to further remove the features
that incur the smallest loss of the classification margin between the classes. Another paper from
Persello and Bruzzone| [2015] proposes to solve an optimization problem with two terms: the
first one maximizes the relevance between source features and labels using the Hilbert-Schmidt
Independence Criterion while the second term minimizes the shift between the domains using
kernel embeddings. Contrary to our algorithm, the above mentioned methods are supervised as
they both use annotations in the target domain. Finally, the method that is the most similar to
ours is the feature selection algorithm for transfer learning presented by |Uguroglu and Carbonell
[2011]. In this latter paper, the authors use a parametric maximum mean discrepancy distance in
order to find a weight matrix that allows to identify invariant and shifting features in the original
space. As we will show in Section [£.4.1] this method and our contribution are closely related
from a theoretical point of view, even though our method remains much more computationally

attractive.

4.3 Preliminary knowledge

Optimal transport has been already described in Section and mainly relies on the two
Equations (1.4) and (1.6]) recalled bellow.

*

~* = argmin (v,C)p, (4.1)
~ell(DY, D)

. . 1

7' = argmin (7,C)r - E(Y), (4.2)
~S AT
~YEI(Dy,Dy)

S AT -9 ~T
where (-,)p is the Frobenius dot product, II(Dy,Dy) = {v € R7*"|y1 = Dy,v'1 = Dy}

is a set of doubly stochastic matrices and C' is the cost matrix where Cj; is the cost between
S

i
to m]T We abbreviate the problem given in Equations (4.1) and (4.2)) respectively as OT and

OT2. The use of optimal transport for domain adaptation has been studied for the first time

wf e X% and a:JT € XT which defines the energy needed to move a probability mass from @

by (Courty et al. [2014]. In this work, the authors present a new variant of optimal transport
(abbreviated OT3) based on Equation (4.2)) by adding a class regularization /1 ;:
27

v* = argmin (v,C)Fr — XE(’Y) +nQ(), (4.3)
YEN(Dy D)

where the Q(v) = >, H'lejH%/Q term prevents the source instances with different labels
from being transported to the same target instance. 7y, ; is a vector which is a subset of the jth
column of « and where the indexes of the selected rows are given in I; which lists the indexes
of the examples in X with a label equal to [ in Y°, and j goes through the indexes of the

examples in X 7.
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Figure 4.1: Comparison of the 8 variants of optimal transport: OT on the left, OT2 in the
middle (A =1), OT38 on the right (\ =1, n=1). First row shows ~* with the higher coupling
values seen as darkest blue. The second row shows the source and target points composed of 3

classes in 3 colors. The coupling between them are shown as segments.

Using the optimal coupling matrix 4* found with Equations (4.1]), (4.2]) or (4.3)), the authors

propose to transport the source examples by solving for each of them:

n
x? = arg minZ'ﬁjc(m, ac]T) (4.4)

In the case of the squared Euclidean distance, the closed form solution of this problem can be

written as |[Courty et al., 2014]:
X5 = diag ((7*1)*1) . < (4.5)

~5 T
When D and D, are uniform (in practice, this is always the case for us), Equation (4.5) is
simplified to

X% = my*XT, (4.6)

With this expression, each source instance is represented as the weighted barycenter of the
target instances with which it has the highest values in ~*.

We give a graphical comparison of the OT, OT2 and OT3 algorithms in Figure[d.I] We see
that the basic OT associates one target instance to one source instance while with OT2 each
source point’s mass is divided and transported to its closest target points. By adding the class
regularization OT3, we prevent the algorithm from transporting the mass of source instances

of different classes to the same target instance.
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4.4 Proposed approach

In this section, we present our main contribution. We start by formally introducing a theoretical

result that we use to derive our algorithm.

4.4.1 Theoretical insight

The use of optimal transport in domain adaptation was first theoretically analyzed by |[Redko
et al. [2017]. In this paper, the authors proved that under some mild assumptions imposed on
the form of the transport cost function, and given any convex loss h € ‘H with h : X — [0, 1],
the true target risk R”(h) and the true source risk R°(h) can be related through the following

inequality
RT(h) < RS(h) + W(D*,DT) + ), (4.7)

where ) is the combined error of the ideal hypothesis ~* that minimizes R%(h) + R”(h) and
W is the Wasserstein distance computed using the optimal transport plan as defined in Equa-
tion . This result shows that in order to upper-bound the error of a classifier in the target
domain, one has to minimize the source error function and the discrepancy between the source
and target distributions given by the Wasserstein distance.

Below, we use this result as a starting point in order to develop our approach. To this end,
we first notice that the source and target domains can be equivalently seen as 2-dimensional
product spaces X° x F¥ and &T x FT, where X7 (resp. XT) and F° (resp. F!) denote the
source (resp. target) instance and feature spaces. In this case, the probability distributions DS
and DT are also product measures supported on X° x F¥ and X7 x FT and can be written
as DY x D; and DI, x DL, respectively. Using the results proved by [Talagrand, [1995| for
concentration of measures in product spaces, we can upper bound the Wasserstein distance
between D and DT as follows:

w(D?, DT < W(D%,DE) + : W (D3| D%, DL)dD%.

S
In this inequality, the measures D3 (resp. DL) and D3, (resp. DL) can be used interchangeably.
Now, by plugging it into the learning bound of Equation , we obtain

RT(h) < RS(h) + W(D%,DE) + : W (D3| D%, DY)dDE + A

S
This inequality shows that when one considers probability measures over a product space of
instances and features spaces, a successful adaptation necessitates the minimization of the dis-
crepancy between the feature distributions D}Z, D]T_- as well as that of the instance distributions
Di, D/T\, conditionally on the source features measure Df—_. Thus, it naturally leads to a two-
stage procedure where the first goal is to reduce the discrepancy between the feature sets of the
two domains while the second is to apply an appropriate domain adaptation algorithm between

their instances described by an optimal set of features obtained at the first stage.
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In what follows, we introduce our method based on the idea of finding a coupling that
aligns the distributions of features across the source and target domains. As suggested by the
obtained bound, the selected features minimizing the W(Di, D]TE) can be used then by a domain
adaptation algorithm applied to the source and target examples of a reduced dimensionality.
The Wasserstein distance here can be replaced, in practice, by the popular maximum mean
discrepancy distance |Gretton et al., 2012] often used in domain adaptation as both of them
belong to a larger class of integral probability metrics defined over different functional classes.
In this case, the feature selection algorithm proposed by [Uguroglu and Carbonell [2011]E] also
indirectly minimizes the discrepancy between the marginals Dfr and DJTE. Nevertheless, the
computational complexity of the proposed optimization procedure is polynomial thus making

its use prohibitive in real-world applications.

4.4.2 Problem setup

Until now the optimal transport was used in order to align the empirical measures ’ﬁi and
’ZA)i defined based on the observable datasets X° € R™*¢ and X € R"*¢. The interpolation
step performed using Equation aims at re-weighting the source instances so that their
distribution matches the one of the target examples. The geometric interpretation is that, to
minimize the divergence between D¥ and DT, we can associate the source examples with the
target examples based on the highest coupling values.

As mentioned in the previous section, the idea of our method is to go from the example
space to the feature space. To this end, we now consider that X° and X7 are drawn from
2-dimensional product spaces X% x FS and XT x FT, where X%, XT C R% while 75 C R™ and

FT C R™. In this case, we can define two empirical probability measures

d d
~ 8 1 ~T 1
’D}-:g E 5f1§, and ’D]::g E (sfiT,
i=1 =1

based on the source and target features {f°}¢, € F5 {fI1%, € FT, respectively. Our
~5 T
goal now is to transport Dx to Dx by solving the entropy regularized optimal transportation

problem given as follows:

1
v = argmin (y/,CNp - TE ('7f> , (4.8)
. S AT )\
~/€l(Dx,Dx)
where Cf; = |17 — f]|3.
In what follows, we show that the solution of this problem can lead to a principally different

domain adaptation method that is based on a feature selection approach rather than on the

original instance re-weighting one.

!Unfortunately, we were unable to use this method as a baseline in our experiments due to the lack of

implementation details in their paper and the absence of a publicly available code.
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4.4.3 Finding a shared feature representation

At this point, one may notice that in order to apply optimal transport between ’137]; and ’1/57];,
it is necessary to calculate the cost matrix C¥ which is possible only if the numbers of source
and target instances are equal. Furthermore, as source and target features are described by
supposedly shifted distributions, aligning them directly using any arbitrary sets of instances
may not be appropriate due to the differences in the representation spaces that may exist
across the two domains. In order to tackle both of these problems, we propose to find a
matching between i, the example index Vi = {1,...,m} describing the source features and j,
the example index Vj = {1,...,n} describing the target features based on the original optimal
transportation problem. More formally, based on the solution v* of the optimization problem

given by Equation (£.1)), we define the optimal subset of target instances X% as:
XTe = fg; e XT | j = argmax~;;,i € {1,...,m}}. (4.9)

This particular choice of the algorithm OT rather than its regularized versions (OT2 and OT3)
is explained by the fact that we are interested in a sparse matching between the two sets, i.e.,
the one limiting the spread of mass. We will give an empirical justification of using the OT

algorithm for instance selection in the experimental section.

n

Xoo | Xio | X20 [ Xao [ Xio | X50 | Xéo | X7o
d XL XEIXE X XE x5 x5 x5
Xio | Xio | X35 [ Xip | Xy | X | XGp | X
d d
A Input: X7 A
Xoo | X5 X5, 0 0075, 0 0 0 0 0 [o2s XL XxI X%
X5 Xy X3, 0 005 0 0125 0 0025 0 @ 0O XL Xh X%
m X5 Xo X5 0 0 [0125] 0 0075 0O 0 0 X XL X% m
X5 X5 X5 0125 0 0 0 005 0025 0 0 x5 xh Xk
X5 X3 X5 0 0 0 0 0 007500125 0 xX& Xy X4
Input: X*° ~*  0T(X®, XT) Output: X

Figure 4.2: Illustration of the example selection in the target domain described in Algorithm

[4.11 For each source example, select the target example with which it has the highest coupling

value.

This process, summarized in Algorithm [4.1Phnd illustrated in Figure is a required

Zwhere zscore(X) is defined as follows: for each column of X, one subtracts its mean and divides by its
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Algorithm 4.1: Example selection in target domain
Inputs : X° € R"*4,
XT ¢ rrxd
Output : X% e R™*? _ gptimal subset of target instances
X5=zscore(X?®); XT=zscore(X")
~* + 0T(X5, XT)

X {z; € X" = argmaxyfj}
ie{1,...m}

Algorithm 4.2: Feature ranking for domain adaptation
Inputs : X° € R"x4,
xT ¢ goxd
Output : List F of d most similar features from X* and X7
XT™ ¢ Algorithmf. 1 X, XT)
X5T=zscore(X5T); XT T =zscore(X™T")
A = 0T2(XST, X™T )\ = 1)
F= argSortDesc({vif|i € {1,...,d}})

preliminary step consisting in finding which examples will be used to describe the features in
the source and target domains. The selection stage used to obtain T relies on the intrinsic
capacity of the coupling matrix to describe the probability of associating each source instance

with each target instance based on their similarity.

4.4.4 Feature selection

Now, we let X7 = X ™" meaning that in Equation the target features are described by the
set X T of target examples. If n > m, we invert the roles of X° and X7 in Algorithm and
instead let X° = X°*. Furthermore, in a highly imbalanced classification setting, or in the
presence of a large number of instances, we advise to first select a subset of source instances by
balancing the examples according to their classes before applying Algorithm This selection
allows to capture a class information from the source domain without needing labeled examples
from the target domain, and thus is still unsupervised w.r.t. the target domain.

We now solve the problem given in Equation and obtain the optimal coupling v*/ €R¥*¢,
Similar to what we have done at the example selection step, we analyze the values of the coupling
matrix in order to determine the less shifted features across the two domains. The important
difference, however, is that we sort the features by analyzing only the diagonal of the coupling
matrix. This peculiarity is explained by the fact that the values on the diagonal correspond to
the similarities between the same features in the shared source and target representation space.

By transporting the features with the OT2 algorithm, each source feature is transported to its

standard deviation.
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nearest target features. Because of this, if a given feature is shifted across the two domains, then
its mass will be uniformly spread on the target features so that its mass on the corresponding
target feature will be rather small. Similarly, if a feature is similar between the source and
target domains, then the majority of the mass of this source feature should be found on its
corresponding target feature.

Based on this idea, we propose to construct the ordered list of features F', where the feature
number i in F is the one having the i*" highest coupling value on the diagonal of the coupling
matrix, ¢.e.,

F= argsort({’y;-f |1e{1,....d}). (4.10)

By varying the parameter A in OT2, we can spread the mass of a source feature more or less
uniformly when transporting it to the target features. Even though one may obtain different
coupling values for different values of A, it does not affect the order of features returned in F

allowing us to fix A =1 in all empirical evaluations to avoid hyper-parameter tuning.
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Figure 4.8: Illustration of our feature ranking for domain adaptation described in Algorithm
[4-2 It consists in sorting the features by descending order of their coupling value across the two

domains.

The pseudo-code given in Algorithm [£.2]and illustrated in Figure[£.3|summarizes our feature
selection method. After having obtained the ordered list of features F, we can use its d* < d
first features for the classification problem at hand. It is worth noting that the proposed method
can be applied as a pre-processing before using any domain adaptation algorithm to discard the

features that are completely different across the two domains. On the other hand, it can also
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be applied in the “no adaptation setting” to select the common features between the training

and test data.

4.5 Experimental evaluation

In this section, we provide an empirical study of the proposed algorithm based on three domain
adaptation benchmarks which are Office/Caltech [Saenko et all [2010| |Gopalan et al. 2011],
MNIST/USPS [Courty et al., 2017] and Amazon review [Germain et al.,2020], and on a clinical
imaging database |[Niaf et al., 2012| for computer-aided diagnostic task. The optimal transport
algorithms OT used in Algorithm OT2 used in Algorithm and OT3 are available in
the Python POT libraryﬂ, making our method straightforward to implement. Nevertheless, we

make the Python implementation and the data used in our experiments (except the medical

dataset for privacy reasons) publicly availableﬁ for the sake of reproducibility.

4.5.1 Experiments on visual domain adaptation data

The main assumption of our method is that not all features are equally useful for adapting
a clagsifier from the source domain to the target one. This is especially the case for datasets
described by features calculated using the Bag-of-Words (BoW) methods, such as, for instance,
the features of the Office [Saenko et al.| [2010]/Caltech [Gopalan et al. [2011] dataset.

Office/Caltech dataset For this dataset, the classification task is to assign an image to a
class based on its content. It is composed of 4 domains: Amazon (A), Caltech (C), Webcam
(W) and DSLR (D) containing m = 958, m = 1123, m = 295 and m = 157 images, respectively
belonging each to one of ¢ = 10 different classes (see Figure for examples of images that
can be found in the four domains). These domains form 12 pairs of domain adaptation sub-

problems.

@-0F Q SN ) MEES du=e
~Efde=Ea> OEVEDSeC
Ve @% EHE LS

AMAZON CALTECH DSLR WEBCAM

Figure 4.4: Examples of images from the 10 classes in the four domains of the Office/Caltech

dataset.

In what follows, we use three different types of features: (1) SURF features |[Bay et al., [2006]
of size d = 800 constructed using the BoW method; (2) CaffeNet features [Jia et al., 2014] that

*https://github.com/rflamary/POT
‘https://leogautheron.github.io
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Table 4.1: Classification accuracies in % and standard deviation with no adaptation for SURF,
CaffetNet and GoogleNet features. Here, \, X (resp. ) indicates the use of the first X features
sorted by decreasing (resp. ascending) similarity computed with Algorithm .

SURF features CaffeNet features GoogleNet features
DA pairs 400 /400 800 N\ 512 /512 4096 256 /256 1024
A—C 25.4+2.4 15.4+1.5 23.1+1.6 74.9+£2.0 298424 71.7£3.5 85.7+1.2 64.742.4 84.6%+1.1
A—D 24.54+2.9 16.2+3.0 21.9£24 78.8+£3.5 20.4£28 76.0£3.5 86.7£2.4 68.6+4.9 88.4+2.5
A—-W 27.5+£2.2 16.2+2.6 26.0+2.1 77.6+£1.9 20.24+3.5 66.0+4.6 85.4+3.1 51.845.9 83.5+2.8
C—A 24.8+1.4 14.14£2.2 212424 83.7+1.8 38.7+4.5 82.1+2.2 90.4+1.2 745434 90.6£1.7
C—D 25.5+3.7 15.5+2.8 22.84+3.6 76.2+3.6 24.14+3.4 74.24+4.9 88.3+£2.7 68.5+4.3 88.6+2.7
C—=W 23.3+3.0 13.9+2.2 20.6£3.5 75.4+£3.5 20.3£3.2 70.3£5.3 86.24+2.7 54.3+4.6 83.3£24
D—A 25.7+£2.0 15.842.9 26.7+1.7 75.4+2.1 20.843.8 68.7+2.9 84.2+2.0 46.4+4.2 82.3%+1.6
D—C 23.8£1.9 16.0£2.1 24.8£1.5 65.0£2.6 21.5£2.5 66.6+£1.8 80.5+1.7 46.9+2.8 77.8+2.5
D—-W 53.6+3.5 22.1+3.4 53.3%2.7 92.6+2.0 32.8+5.1 91.9+1.9 96.5+1.1 81.5+3.4 97.4+0.8
W—A 23.7+1.9 15.6+1.9 23.1£1.5 81.54+1.2 18.842.4 68.3£3.0 89.74+0.8 55.842.5 87.0£1.2
W—C 18.1+1.7 12.0+1.6 19.5+1.0 72.24+1.1 234421 61.242.1 83.7+1.1 49.9+2.5 79.4+1.2
W—D 63.4+3.6 21.7+£3.4 52.4%2.6 96.5+1.5 49.7+£3.2 96.3+1.0 98.9+0.8 93.4+1.8 99.2+0.5
Mean 29.9+2.5 16.2+£2.5 27.9+2.2 79.2+2.2 26.7+3.3 74.4£3.0 88.0£1.7 63.0+£3.5 86.8+1.8

are obtained by feeding the images to a pre-trained neural network based on the prominent
AlexNet |Krizhevsky et al., 2012]; (3) GoogleNet features [Szegedy et al., 2015| obtained in the
way identical to CaffeNet features using GoogleNet network. In order to obtain the CaffeNet
and GoogleNet features, these two neural networks were first trained on ImageNet, a large
dataset containing millions of images distributed across ¢ = 1000 different classes. We removed
their classification layer of size 1000 to use the output of the previous layer, giving d = 4096
features for CaffeNet and d = 1024 features for GoogleNet. We downloaded the pre-trained
networks from the Caffe website [Jia et al., [2014] before using them to extract the features from
our images, and this without doing any fine-tuning or any other modification of the networks
apart from removing their last layer.

The experimental protocol used to evaluate the proposed method is based on the one pre-
sented by (Courty et al|[2014]. For each adaptation (source, target) pair S — 7', we randomly
sample 20 images per class (8 if S is D). This gives us 200 images (resp. 80) for S. All images
from T are considered. We then apply Algorithm with X and X7 to obtain the ordered
list of features F'. For an increasing number of features d, we use the first d features of F to,
first adapt S to T, and then use a 1-nearest neighbor classifier with the source adapted data as
training set to compute the classification accuracy on the target data. We repeat this 19 times

and report mean accuracies for each pair.

Classification results The classification results for the three types of features are given in
Table .1l From this table, we see that by selecting 512 CaffeNet features having the highest
similarity between the source and target domains, we obtain a mean accuracy of 79.2% across

the 12 adaptation pairs compared to 74.4% accuracy obtained using all 4096 features. This
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Figure 4.5: Mean accuracies over the 12 DA pairs (from Table without using an adaptation
algorithm as a function of the number of features selected. Our method corresponds to the
‘Descending’ curve consisting in selecting the features ordered by decreasing similarity between

source and target domains.

Table 4.2: Mean accuracies over the 12 DA pairs without applying adaptation using 3 different
type of features: SURF (d=800), CaffeNet (d=4096) and GoogleNet (d=1024).

#features SURF CaffeNet GoogleNet

N d/32 21.3+2.4 74.44£2.9 80.0+2.6
d)32 12.742.0 20.6+£3.0 24.2+3.3

N d/8 25.7£2.6 79.2+2.2 86.9+1.8
d/8 14.04£2.2 26.7+3.3 48.1+3.9

N d/2 29.942.5 80.0+2.2 88.1+1.8
S df2 162425 51.3+4.4 77.242.6

d 279422 74.443.0 86.8+1.8

behaviour is further confirmed in Figure (middle) that illustrates the obtained classification
results for a number of features varying between 128 and 4096. We note that our method
outperforms random feature selection while selecting the least similar features gives worse per-
formances in all cases. We observe the same behavior for the SURF and GoogleNet features:
our method gives better or almost identical performances on almost all domain adaptation
pairs with significantly less features used. This confirms our claim about the efficiency of our

proposed method for domain adaptation.

The general comparison of CaffeNet, SURF and GoogleNet features is given in Table As
before, we observe an important difference between taking the first most similar and dissimilar
features across the two domains and better performances are obtained by taking a reduced

number of features. Another noticeable point is that the performances of the SURF features
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Table 4.3: The arrays give the recognition accuracies in % and standard deviation with adapta-
tion using the OT3 algorithm for SURF, CaffetNet and GoogleNet features.

SURF features

CaffeNet features

GoogleNet features

DA pairs 400 /400 800 2048 /12048 4096 512 /512 1024
A—C 27.241.6 285422 30.3+1.5  826+1.1 73.042.0 82.740.7  89.5+0.7 82.5+1.8 89.7+0.8
A—D 39.044.3 329434 40.9+2.6  91.3+15 85.6+3.0 93.3£1.3  91.4+09 948+1.6 93.5+0.4
AW 34.1£24  30.5+2.9 34.44+2.0 94.8+1.0 74.1+4.1 92.1+1.1 96.6+1.3 88.6+3.0 95.8£1.1
C—A 34.2+24 30.94+3.7 36.91+2.6 89.0£1.4 84.1+1.7 89.24+0.8 92.5+1.0 89.3£1.7 93.84+0.5
C—D 434455 38.3+4.0 44.245.0  90.4+12 89.042.3 93.3+1.2  91.840.8 94.6+1.5 93.9+0.9
C—-W 38.3+4.8 30.7t4.2 37.9+5.3 94.0£1.3 75.7£3.6 90.5+1.9 96.0+1.1  90.24+24 96.84+0.7
D—A 271424 249427 28.8+1.7  86.0+1.8 755440 86.6£1.4  90.2+15 829431 91.1+1.1
D—C 278413 269+2.6 28.9+1.4  77.7+34 73.64+2.8 80.0£3.0  86.3+16 81.5+2.0 89.1+0.8
D—-W 66.5£2.9 54.7+2.9 68.6+2.1 98.1+£0.7 92.4+1.3 96.6+0.6 98.2+0.8 96.0+0.9 97.9£0.6
W—A 35.6£1.0 23.6+3.4 37.5+0.8 87.7+1.2 71.1£1.9 86.1+1.9 92.840.4 85.5+2.1 92.94+0.3
W—C 31.541.2 293424 34.3+1.1  78.841.8 67.041.9 78.1+1.8 89.4+1.4 825415 90.3+1.0
WD 71.842.0 57.9+14 714417 95.44+1.2 96.741.0 97.3+£0.7  95.7+1.1 99.6+0.9 97.2+1.2
Mean 39.742.6 34.1£3.0 41.242.3  88.8+1.5 79.842.5 88.841.4  92.5+1.0 89.041.9 93.5+0.8
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Figure 4.6: Mean accuracies over the 12 DA pairs using the OT3 adaptation algorithm as a

function of the number of features selected.

are far behind the CaffeNet features, the latter being slightly worse than GoogleNet features.
Even by taking a small number (1024/32 = 32) of GoogleNet features, we obtain a mean
accuracy of 80.0% which is at least as good as all the other configurations using SURF and
CaffeNet features. To summarize, the presented results clearly show that the order of features

returned by our method is directly correlated with their adaptation capacities.

We saw in the previous experiment that our method works for different types of features
without applying any adaptation algorithm. We present in Table d.3|and Figure [4.6] the impact
of using an adaptation algorithm that takes as input a reduced set of features returned by our
method. Several important conclusions can be made based on these results. First, we notice
that our algorithm does not improve the classification results compared to the performance of

the OT3 algorithm with a randomly selected subset of the CaffeNet and GoogleNet features.
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Table 4.4: Mean recognition accuracies in %, standard deviation and sum of total computational
time (over the 12 DA pairs and 19 iterations) in seconds for different adaptation algorithms

using the CaffeNet features.

Method 512 N, 1024 \,2048 4096

No adapt.  79.2422  0.00s  79.9+2.3  0.00s  80.0+£2.2 0.00s  74.443.0 0.00s

CORAL  80.54+1.8 110.43s  80.8+£1.09 587.69s  80.4:£1.7 3996.20s  80.1+1.7 29930.39s
SA 81.842.0 13255 825418 32.09s  82.9+1.7  66.7ls  83.0£1.7  169.7ls
TCA 835422 221.08s  85.0+£1.9 223.62s  85.8+1.8 229485  85.9+41.7  242.7ls
oT3 84.242.4 19.50s  86.7£1.9 31.76s  88.8+15  54.07s  88.84+1.4 97.47s

As explained in the introduction, OT3 finds a new latent projection of the source data in order
to leverage the shift between the two domains. In this case, eliminating shifted features does
not directly contribute to an improved classification performance as OT3 algorithm can handle
the reduction of shift between the two domains pretty well on its own. However, we can also
observe that the performance of OT3 with a reduced “Ascending” set of features reaches its
maximal value sooner than when no adaptation is performed in . This is explained by
the fact that OT3 successfully adapts the most shifted features. Moreover, it is important to
notice that with or without adaptation, the curve “Ascending” is far below the other curves.
This means that the features identified by our proposed method as most dissimilar between the
two domains are harmful on the performances of the final classifier if used alone.

It is quite intuitive to assume that by selecting a subset of features, we decrease the com-
putational complexity of the adaptation and classification algorithms that are used later. To
support this claim, we present below an additional study of the impact of reducing the number
of features on both the computational time and classification performance for several adaptation

algorithms below.

Running time speed-up For this experiment, we evaluated the gain in computational time
of different adaptation algorithms as a function of the number of features selected by our method.
To this end, we compared the “no adaptation” setting with four state-of-the-art adaptation
algorithms: CORAL [Sun et al. 2016], SA [Fernando et al. 2013], TCA [Pan et al., 2010|
and OT3 [Courty et al., [2014]. We fixed the subspace dimensions of SA and TCA to 80 (or to
the number of features selected when smaller than 80) while for OT3 we set A =2 and n = 1.
Even if from Table we obtained the best performances with GoogleNet features, we select
for this experiment the CaffeNet features to better see the computational gain because they
have the largest dimensionality (4096).

The results of this evaluation are presented in Table [£.4] From these results, we see that
by selecting 2048 out of 4096 most similar features, we are able to obtain slightly better clas-
sification performances for all adaptation methods compared to the case when all features are

used. Moreover, the computation time required by the algorithms greatly decreases. When only
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512 features are used, an even more impressive speed up is obtained with a very slight drop in
performance for the last three methods. These results confirm that our method is capable of
finding subsets of similar features between source and target domains that can give compara-
ble and sometimes even improved classification performances while decreasing considerably the

computation time required for adaptation methods to converge.

Comparison of different instance selection strategies As explained in Section [4.4.3] our
method requires to select a set of examples that describe the features in the source and target
domains before computing the similarity between them. For our method, we propose to select
these examples using the OT algorithm between the source and target examples. In Table [4.5]
we evaluate two other example selection methods on the Office/Caltech dataset: the first one
is based on the random selection of the examples while the second uses a 1-Nearest-Neighbor
(INN) algorithm instead of the OT method. The computation of the features’ rank is then
done in the same way as that of presented in Algorithm [£.2]

Table 4.5: Mean accuracies over the 12 adaptation pairs without applying adaptation on Caf-
feNet features obtained using different exzample selection methods. Our proposed selection method
is OT.

#features Random oT 1NN
(128 42.746.0 74.6+3.4 72.842.9
128 43.9+5.6 20.842.7 22.3+3.1
\DH12 68.1+4.5 79.31+2.6 79.1+2.7
/512 60.8+5.3 27.1+3.3 27.6+3.4
2048 75.94+3.2 80.1+2.2 79.6+2.7
/2048 68.9+4.8 52.3+4.2 50.4+4.4

4096 75.2£3.0 75.2£3.0 75.243.0

From this table, we can see that a random selection of instances gives poor results for dif-
ferent numbers of features considered in our study. On the other hand, we observe that both
OT and the INN algorithm provide close performances in identifying similar and dissimilar
features with a slight superiority of the optimal transport based method. In order to discrim-
inate between the two, we demonstrate in Figure the pitfalls of the INN based selection
that can occur when the vast majority of source points are associated with a handful of target
instances. We can see that for the two considered toy datasets, the selection of target instances
based on the 1NN algorithm leads to a distribution that does not reflect the true distribu-
tion of the target data. If we would have selected points in the target domain randomly, we
would still have the same target distribution, but as we have shown previously in Table [4.5]

the random selection gives worse classification performances. On the other hand, the proposed
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Figure 4.7: Two toy examples where we generated a source and a target distribution (left) before
using the example selection procedure in the target domain using the OT algorithm (in the
middle) and the INN selection (on the right).

strategy for the selection of target examples through the OT algorithm allows to obtain both
good classification performances and to preserve the target data distribution. Recall that he
computation of the OT has a squared space complexity compared to the linear complexity of
the 1NN selection. Consequently, the use of the example selection with the 1NN algorithm can

present a good alternative for large-scale machine learning problems.

4.5.2 Experiments on digit recognition and textual product reviews

Description of the digit recognition datasets We use in this experiment two digits
datasets: MNIST and USPS, where the task is to assign to each image the digit (among
the ¢ = 10 labels) drawn on the image. MNIST is composed of m = 70000 gray-scale images
of size 28 by 28 giving a total of d = 784 features taking their value between 0 (white pixel)
and 255 (black pixel). USPS has m = 9298 gray-scale images of size 16 by 16 giving d = 256
features of values between —1 (white pixel) and +1 (black pixel). As pre-processing, we resize
the MNIST images from 28 by 28 pixels to 16 by 16 pixels, and we normalize the pixel values
in both datasets to be between 0 (white pixel) and +1 (black pixel). We provide in Figure
4.8] some example of images from the MNIST and USPS datasets after pre-processing. Both
datasets are well balanced and each class represents between 8% and 16% of all the examples

in the dataset. These two datasets form 2 pairs of domain adaptation sub-problems.
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Figure 4.8: Examples of images for the 10 digit classes in the MNIST and USPS datasets.

Description of the textual product review dataset The amazon review dataset contains
reviews of four categories of products: m = 6465 reviews of books, m = 5586 reviews of DVDs,
m = 7681 reviews of electronic and m = 7945 reviews of kitchens. We use the pre-processed data
provided by |Germain et al.[[2020] where the task is to distinguish between positive and negative
reviews. The datasets are all balanced with approximately as many positive as negative reviews.
The pre-processing of the data consists in a conversion from the original textual representation
to a numerical one. To this aim, |Germain et al|[2020] first established a list of all possible
uni-grams (one character) and bi-grams (two adjacent characters) present in all reviews. Only
the d = 5000 more common uni-grams and bi-grams among all reviews are kept, and each
review is described by the number of occurrences of each gram inside the review. These four

datasets form 12 domain adaptation pairs.

Classification results We report the classification results of our method using a 3NN algo-
rithm for the digit recognition benchmark, and a linear SVM for the Amazon review benchmark.
The mean results over all the domain adaptation pairs are depicted in Figure[d.9and the detailed
results for each domain adaptation pair are described in Table For the digit recognition
task, our method allows to improve the performances by selecting a subset of features when
learning from USPS and testing on MNIST while showing a slight loss of performances from
MNIST to USPS. For the amazon review problem, we do not see any improvement of the per-
formances by selecting the most similar features compared to using all the features. However,
in both benchmarks we observe the same behavior as with the previous Office/Caltech bench-
mark: selecting the most dissimilar features between the two domains (curves “Ascending”) gives
much worst performances than selecting randomly a subset of features. This confirms that our
method can successfully identify dissimilar features between the two domains that may degrade

the performances of the final classifier.
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Figure 4.9: Mean accuracies over the domain adaptation pairs on the digit recognition and

amazon review datasets.

Table 4.6: Recognition accuracies for the digit recognition benchmark (upper part of the array)

and the Amazon review benchmark (bottom part of the array).

DA pairs N\, 64 /64 256
M—U 67.6 12.8 70.8
U—-M 51.1 6.8 31.7
Mean 59.4 9.8 51.2

DA pairs ¢ 2500 2500 5000
B—D 79.8 72.5 81.5
B—E 76.2 64.3 76.1
B—K 77.8 65.9 79.2
D—B 80.3 72.4 82.5
D—E 77.8 66.4 78.8
D—K 79.5 66.2 80.1
E—B 73.5 63.4 74.3
E—D 74.2 65.0 75.5
E—K 88.0 74.9 89.1
K—B 74.6 63.9 75.2
K—D 76.6 66.5 77.0
K—E 86.4 75.4 87.5
Mean 78.7 68.1 79.7
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Figure 4.10: Example of distribution of 2 features illustrating the shift between the source and

target domains.

4.5.3 Experiments on a medical imaging dataset

We now proceed to the evaluation of our method on a clinical dataset of multi-parametric
magnetic resonance images (mp-MRI) collected to train a computer-aided diagnosis system for
prostate cancer mapping [Niaf et al., 2012, Aljundi et al., 2015]. This system learns a binary
decision model in a multidimensional feature space based on training examples (voxels) from

different classes of interest. This model is then used to generate cancer probability maps.

Data description The considered database consists of 90 mp-MRI exams acquired with
different imaging protocols on two different scanners (49 patients on a 1.5T scanner and 41 on
a 3T scanner), thus producing heterogeneous datasets. Each individual voxel is described by a
binary label (Cancer, Non Cancer) and a set of d = 95 handcrafted features consisting of image
descriptors, texture coefficients, gradients and other visual characteristics (more details in the
paper from |Niaf et al.[2012]). Some of these 95 features have a clear shift between the two
domains, as illustrated in Figure {.10] The number of available instances in both domains is
shown in Table .7] Our goal is to learn a classifier on annotated 1.5T voxels, representing the
source domain, performing well on 3T voxels, considered as the target domain, without using

labels from the latter one.

Table 4.7: Distribution of the MRI vozels between the Cancer and Non Cancer classes in the

source and target domains.

Class #voxels 1.5T #voxels 3T
Non cancer 363,222 846,556
Cancer 56,126 140,840
Total 419,348 987,396

Evaluation protocol We first randomly sample a set .S of m = 1500 voxels equiproportion-
ally from the 49 1.5T exams and both classes of interest. Then, we use Algorithm on S and
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Chapter 4. Representations Learning for Unsupervised Domain Adaptation
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Figure 4.11: Performance of our method on the clinical MRI database with no adaptation (top

row, left) and using the OT38 algorithm (top row, right). The log-scaled similarity of features

across the two domains estimated by our algorithm is given in the bottom row. We observe that

our method correctly identifies the three most shifted features that lead to an important drop in

classifier’s performance.

on T as n = 20000 randomly sampled voxels from the 41 3T exams to obtain 7;. This step is
followed by the adaptation of S to T}, the training of a linear SVM on S, and a testing step
on all voxels from the 3T target domain.

We used the area under the ROC Curve (AUC) defined in Section as the diagnostic
performance measure. This comes from the fact that both the source and the target domains
exhibit an important class imbalance with 86% of non-cancer voxels. In this case, the classi-
fication accuracy used in the previous experiments does not provide a truthful picture of the
classifier’s performance. Our feature selection method is used as a standalone method and in
combination with the OT3 adaptation algorithm. As before, we repeat this process 20 times,

and we report the mean AUC over the 20 iterations.

Obtained results The results for this dataset are shown in Figure {.1I] When all the 95
features are used, we obtain an AUC of 50% without adaptation, corresponding to the worst
possible performance with no distinction between Cancer and Non cancer classes. By applying
our feature selection algorithm (the “Descending” curve) in a standalone manner, we are able

to reach an AUC of 80% with a significant drop in performance when the 3 most dissimilar
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features are added. On the other hand, using our feature selection algorithm before applying
an adaptation algorithm reduces greatly the number of features needed to achieve comparable
performances. This benefit presents an important computational gain when high-dimensional
datasets are considered. Finally, we argued that one of the strengths of our method is its ability
to identify the original features causing the shift between the source and target domains. To
this end, we plot in Figure [f.11]the coupling values used to order the features by their similarity
across the two domains. From this Figure, we can see that our algorithm allows to identify the

three most shifted features that lead to a significant performance drop observed previously.

4.6 Conclusions and perspectives

In this chapter, we presented a new feature selection method for domain adaptation based on
optimal transport. Building upon a recent theoretical work on optimal transport in domain
adaptation, we proposed a feature selection method that transports the empirical distribution
of features in the source domain to that of the target one in order to obtain a coupling matrix
representing their joint distribution. This coupling matrix is further used to identify the subset
of features that remain unshifted across the two domains. We evaluated our method on both
benchmark and real-world datasets and showed its efficiency in identifying the subset of features
that successfully reduces the discrepancy between the two domains. Furthermore, we illustrated
the usefulness of our method in reducing the computational time of several state-of-the-art
methods that converge faster when taking as input a reduced set of features returned by our
algorithm.

The possible future investigations that may follow up the presented work are many. First
of all, we would like to combine our feature selection algorithm with a feature-transformation
domain adaptation algorithm in a way such that the projection of data and the selection of
features would be performed simultaneously. The potential interest of this joint approach
would be to reduce the computational complexity of the adaptation methods and to improve
their performance while maintaining the ease of interpretability of the obtained results. On the
other hand, it would be also very interesting to extend the proposed framework to the general
transfer learning scenario where the source and target tasks are not necessarily the same. In
this case, the feature selection algorithm would have to take into account the discriminative
power of each source feature in the target domain. Solving this problem in an unsupervised
setting is a very challenging task that would require an efficient feature expressiveness measure
to be introduced. We believe that this future perspective would be of a great interest in many
real-world applications, notably the health-care one, where the manual labeling of the produced

MRI scans represents an important bottleneck due to its highly time-consuming nature.

102



Conclusion and Perspectives

In this thesis, we tackled the problem of learning a suitable representation of the data in
the specific context where the supervision on the data of interest is limited. We considered
this setting in different possible scenarios (i) in Chapter , the training set is composed of a
small number of positive labeled examples that often happens, e.g., in anomaly detection tasks.
To address this problem, we introduce a theoretically well rooted metric learning algorithm
specifically dedicated to deal with highly imbalanced datasets (i) in Chapter , we assume that
the whole training set is composed of a limited number of labeled examples, preventing the use of
deep neural network-based approaches. We tackle this problem by learning iteratively through
boosting and kernel random Fourier features a model and a representation that capture complex
decision boundaries and generalizes well with few examples and (%) in Chapter , the source set
is made of labeled examples but the target domain on which the model will be deployed does not
provide labeled examples. We cope with this difficult setting by learning a joint representation
between the source and target domains through the lens of a feature selection algorithm that
optimizes an optimal transport problem to find the most similar features between the two
domains. In each of these scenarios, we proposed an original contribution and showed how a
good representation of the data can help to create classification models more suited than with
the original representation of the data. Our contributions are mainly algorithmic, but each of

them takes strong root in a theoretical analysis.

A common perspective to the different contributions lies in the scalability of the algorithms
with respect to the number of training instances. This is especially true for the contributions
in Chapters [2| and [4] that both rely on pairwise distance matrices between two potentially large
sets of examples. In the metric learning part, the distance matrices are computed to ensure
that all constraints are satisfied by the learned metric. A promising perspective would consist
in incorporating the ideas of neural network methods and perform a batch optimization: at
each iteration, only the constraints on a small set of examples would be checked, instead of all
the examples as done at the moment. Even if the contribution random Fourier features-based
algorithm presented in Chapter [3]is relatively fast compared to the state-of-the-art competitors,
a batch optimization could also makes the computation much faster by computing the residuals

for a reduced number of examples.

In our optimal transport-based feature selection, (4], a discrete transport map is computed

between two sets of examples and provides the transport plan between any two points of the
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Conclusion and perspectives

sets. Instead, a possibility could be to rely on optimal transport implementations that learn a
continuous transport function, that could eventually also be learned using batch optimization.

A second perspective in line with what is done in Chapter [3| would be to provide a kernelized
version of our metric learning algorithm IML. The use of random Fourier features seems appro-
priate here as like most metric learning algorithms, this method allows to produce a mapping
of the point in a different representation space. A possibility in the setting of metric learning
would consist in learning a linear weighted combinations of the random features to implicitly

induce non linearities.
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Abstract Machine learning consists in the study and design of algorithms that build models able to
handle non trivial tasks as well as or better than humans and hopefully at a lesser cost. These models
are typically trained from a dataset where each example describes an instance of the same task and
is represented by a set of characteristics and an expected outcome or label which we usually want to
predict. An element required for the success of any machine learning algorithm is related to the quality
of the set of characteristics describing the data, also referred as data representation or features. In
supervised learning, the more the features describing the examples are correlated with the label, the
more effective the model will be. There exist three main families of features: the “observable”, the
“handcrafted” and the “latent” features that are usually automatically learned from the training data.
The contributions of this thesis fall into the scope of this last category. More precisely, we are interested
in the specific setting of learning a discriminative representation when the number of data of interest is
limited. A lack of data of interest can be found in different scenarios. First, we tackle the problem of
imbalanced learning with a class of interest composed of a few examples by learning a metric that induces
a new representation space where the learned models do not favor the majority examples. Second, we
propose to handle a scenario with few available examples by learning at the same time a relevant data
representation and a model that generalizes well through boosting models using kernels as base learners
approximated by random Fourier features. Finally, to address the domain adaptation scenario where the
target set contains no label while the source examples are acquired in different conditions, we propose to
reduce the discrepancy between the two domains by keeping only the most similar features optimizing

the solution of an optimal transport problem between the two domains.

Résumé L’apprentissage automatique consiste en ’étude et la conception d’algorithmes qui constru-
isent des modéles capables de traiter des taches non triviales aussi bien ou mieux que les humains et, si
possible, & un moindre cotit. Ces modéles sont généralement entrainés a partir d’un ensemble de données
ol chaque exemple décrit une instance de la méme tiche et est représenté par un ensemble de carac-
téristiques et un résultat ou étiquette que nous voulons généralement prédire. Un élément nécessaire
au succes de tout algorithme d’apprentissage automatique est lié & la qualité de I’ensemble de carac-
téristiques décrivant les données, également appelé représentation des données. Dans l'apprentissage
supervisé, plus les caractéristiques décrivant les exemples sont corrélées avec 'étiquette, plus le modéle
sera efficace. Il existe trois grandes familles de caractéristiques : les caractéristiques “observables”, les
caractéristiques “fabriquées & la main” et les caractéristiques “latentes” qui sont généralement apprises
automatiquement & partir des données d’entrainement. Les contributions de cette thése s’inscrivent
dans le cadre de cette derniére catégorie. Plus précisément, nous nous intéressons au cadre spécifique de
I’apprentissage d’'une représentation discriminatoire lorsque le nombre de données d’intérét est limité.
Un manque de données d’intérét peut étre constaté dans différents scénarios. Tout d’abord, nous abor-
dons le probléme de ’apprentissage déséquilibré avec une classe d’intérét composée de peu d’exemples
en apprenant une métrique qui induit un nouvel espace de représentation ot les modéles appris ne
favorisent pas les exemples majoritaires. Deuxiémement, nous proposons de traiter un scénario avec
peu d’exemples disponibles en apprenant en méme temps une représentation de données pertinente et
un modeéle qui généralise bien en boostant des modéles basés sur des noyaux et des caractéristiques
de Fourier aléatoires. Enfin, pour traiter le scénario d’adaptation de domaine ot ’ensemble cible ne
contient pas d’étiquette alors que les exemples sources sont acquis dans des conditions différentes, nous
proposons de réduire 1’écart entre les deux domaines en ne conservant que les caractéristiques les plus

similaires qui optimisent la solution d’un probléme de transport optimal entre les deux domaines.
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