
UMR • CNRS • 5516 • SAINT-ETIENNE

École Doctorale ED488 Sciences, Ingénierie, Santé

Numéro d'ordre NNT : 2020LYSES044

Learning Tailored Data Representations
from Few Labeled Examples

Construction de Représentations de Données Adaptées
dans le Cadre de peu d'Exemples Étiquetés

Thèse préparée par Léo Gautheron

au sein de l'Université Jean Monnet de Saint-Étienne

pour obtenir le grade de :

Docteur de l'Université de Lyon

Spécialité : Informatique

Univ Lyon, UJM-Saint-Etienne, CNRS, Institut d'Optique Graduate School,

Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France.

Thèse soutenue publiquement le 8 décembre 2020 devant le jury composé de :

Paulo GONÇALVES Directeur de recherche, INRIA Rhône-Alpes Rapporteur

Amaury HABRARD Professeur, Université de Saint-Étienne Co-Directeur

Emilie MORVANT Maître de conférences, Université de Saint-Étienne Co-Encadrante

Marc SEBBAN Professeur, Université de Saint-Étienne Directeur

Christine SOLNON Professeur, INSA de Lyon Examinatrice

Marc TOMMASI Professeur, Université de Lille Rapporteur

ii

Table of Contents

Introduction 1

List of Publications 5

List of Notations 7

1 Background 9

1.1 Supervised learning . 9

1.1.1 Learning from labeled data . 9

1.1.2 Performance measures . 10

1.1.3 Loss functions . 12

1.1.4 Parameter tuning . 14

1.1.5 Generalization guarantees . 15

1.2 Classi�cation algorithms . 18

1.2.1 k-Nearest Neighbor (kNN) . 18

1.2.2 Support Vector Machine (SVM) . 19

1.2.3 Decision tree . 22

1.2.4 Neural networks . 22

1.2.5 Boosting . 23

1.3 Methodological building blocks . 24

1.3.1 Metric learning . 24

1.3.2 Random Fourier features (RFF) . 25

1.3.3 Optimal transport . 26

2 Metric Learning from Imbalanced Data with Generalization Guarantees 31

2.1 Introduction and related work . 32

2.2 Notations and setting . 35

2.3 IML: Imbalanced Metric Learning . 35

2.4 Generalization bound for IML . 39

2.5 Experiments . 49

2.5.1 Datasets . 49

2.5.2 Optimization details . 49

iii

Table of Contents

2.5.3 Experimental setup . 50

2.5.4 Analysis of the results . 50

2.6 Conclusion and perspectives . 56

3 Ensemble Learning with Random Fourier Features and Boosting 59

3.1 Introduction . 60

3.2 Notations and related work . 61

3.3 Pseudo-bayesian kernel learning with RFF . 62

3.4 Gradient boosting random Fourier features . 63

3.4.1 Gradient boosting in a nutshell . 64

3.4.2 Gradient boosting with random Fourier features 64

3.4.3 Re�ning GBRFF1 . 67

3.5 Experimental evaluation . 69

3.5.1 Setting . 70

3.5.2 The importance of learning the landmarks in GBRFF1 71

3.5.3 Improving the e�ciency of GBRFF1 72

3.5.4 From GBRFF1 to GBRFF2 . 74

3.5.5 In�uence of learning the landmarks . 75

3.5.6 In�uence of the number of examples on the computation time 76

3.5.7 Performance comparison between all methods 77

3.5.8 GBRFF2 is able to learn complex decision boundaries that generalizes

well on small datasets . 77

3.6 Conclusion and perspectives . 78

4 Representations Learning for Unsupervised Domain Adaptation 81

4.1 Introduction . 81

4.2 Related work . 83

4.3 Preliminary knowledge . 84

4.4 Proposed approach . 86

4.4.1 Theoretical insight . 86

4.4.2 Problem setup . 87

4.4.3 Finding a shared feature representation 88

4.4.4 Feature selection . 89

4.5 Experimental evaluation . 91

4.5.1 Experiments on visual domain adaptation data 91

4.5.2 Experiments on digit recognition and textual product reviews 97

4.5.3 Experiments on a medical imaging dataset 100

4.6 Conclusions and perspectives . 102

Conclusion and perspectives 103

iv

Table of Contents

List of Figures 106

List of Tables 107

List of Algorithms 109

Bibliography 111

Abstract 121

v

vi

Introduction

Machine learning consists in the study and design of algorithms that build models able to

handle non trivial tasks as well as or better than humans and hopefully at a lesser cost. These

models are typically trained from a dataset where each example describes an instance of the

same task and is represented by a set of characteristics and an expected outcome or label which

we usually want to predict. As a practical case, the underlying task can be that of a bank which

has to decide whether it should grant a credit to a customer or not. After having collected a

dataset describing past credits granted by the bank, a model can be automatically built based

on characteristics of the credits (duration, rate, purpose, amount...), of the customers (gender,

age, incomes, profession...) and a label stating, e.g., whether or not the customer succeeded

in repaying the loan. The model can then be used by the bank to evaluate the risk for new

customers applying for a loan to be creditworthy or not. This kind of tasks addressed in this

thesis belongs to the supervised classi�cation paradigm. The supervision comes from the fact

that we provide to the learning algorithm, in addition to the characteristics, the discrete label

of each training example.

All along this document, we will only focus on such supervised classi�cation problems where

the number of possible labels is �nite. Therefore, we will not address regression (where the num-

ber of outcomes is in�nite) or unsupervised tasks (where the label is supposed to be unknown

at training time, like, e.g., in clustering or dimensionality reduction).

Whatever the learning paradigm, an element shared by the previous settings and required for

the success of any machine learning algorithm is related to the quality of the set of characteristics

describing the data, also referred as data representation or features. In supervised learning, the

more the features describing the examples are correlated with the label, the more e�ective the

model will be. For example, features describing the wages of the customer will probably be

more relevant to estimate his/her creditworthiness than the height and weight of the person.

Therefore, de�ning features that capture well these correlations is of high importance in machine

learning to build an e�ective supervised model.

There exist three main families of features. The �rst one corresponds to the �observable�

features which can be easily and directly measured, such as the wages of customers, the blood

pressure of a patient, etc. The second category gathers the �handcrafted� features that typically

require a certain expertise about the domain, like the SURF [Bay et al., 2006] image descriptors

used in computer vision. The last family, we will mainly focus on in this thesis, corresponds

1

Introduction

to the �latent� features that are usually automatically learned from the training data as done

in deep learning [Goodfellow et al., 2016], metric learning [Kulis, 2013, Bellet et al., 2015],

PCA, or matrix factorization to cite a few methods. The main advantages of this last category

of features (that led to the emergence of the sub-�eld called representation learning) are the

following: (i) they allow us to improve the machine learning task by better representing the

problem at hand and capturing automatically the correlations with the labels, (ii) they allow to

overcome the limitations of the handcrafted features that often require a costly human expertise

and (iii) they are often computationally convenient to process.

The contributions of this thesis fall into the scope of this last category. More precisely, we are

interested in the speci�c setting of learning a discriminative representation when the number

of data of interest, often called �positive� examples, is limited. This de facto excludes deep

learning-based methods which are nowadays those producing indisputably the best performing

latent features, but that often require large quantities of training data as well as a tedious

tuning process.

A lack of data of interest can be found in di�erent scenarios. The �rst one arises when the

labels of the examples are highly imbalanced, leading to a training dataset where examples of

the class of interest are very scarce. This is typically the case in bank fraud detection whose

goal consists in detecting fraudulent transactions. In this scenario, the number of frauds is

dramatically much smaller than the quantity of genuine transactions. The key issue here is to

prevent the learning algorithm from predicting every single example as belonging to the normal

class. While such a decision would seem very e�ective from an accuracy perspective (indeed,

more than 99.5% of the transactions are usually genuine), it would de�nitely fail by missing all

the examples of interest (i.e., the frauds).

The scarcity of positive examples also occurs when the data is costly either in terms of

money, time or expertise, or even impossible due to the limited history available. This is often

the case in the medical domain when one aims at creating a computer aided diagnostic system

for a certain disease: doctors often struggle to gather many positive examples due to the cost of

capturing features (e.g., MRI scans required to be annotated by experts) or the limited number

of past patients, e.g., a�ected by a rare disease. The peculiarity of this kind of applications

prevents us from using standard machine learning methods, like neural networks, which require

a large number of examples to learn millions of parameters at the risk of over-�tting the data.

The last scenario �nds its roots from the domain adaptation setting [Ben-David et al., 2007,

Redko et al., 2019] where the learning algorithm has access to a labeled source dataset as well

as target examples with few or even no label. The goal is to bene�t from the source to learn

an e�cient model over the target domain, where the two domains are supposed to be related,

yet di�erent. As a practical case, a hospital can use a computer aided diagnostic system for

a speci�c disease developed in another hospital where the characteristics of the patients are

measured di�erently. Due to the di�erences in the acquisition process (e.g., two di�erent MRI

scanners) between the source and target sets, a model learned from the source set will perform

2

Introduction

poorly on the target set if the discrepancy between the two domains is not taken into account

by the model.

To handle these di�erent scenarios, we investigate in this thesis how to learn good represen-

tations through the lens of di�erent machine learning frameworks. First, we tackle the problem

of imbalanced learning with a class of interest composed of a few examples by learning a metric

that induces a new representation space where the learned models do not favor the majority

examples. Second, we propose to handle the scenario with few available examples by learning

at the same time a relevant data representation and a model that generalizes well through

boosting models [Schapire and Singer, 1999] using kernels [Fan et al., 2005] as base learners

approximated by random Fourier features [Rahimi and Recht, 2008]. Finally, to address the

domain adaptation scenario where the target set contains no label while the source examples

are acquired in di�erent conditions, we propose to reduce the discrepancy between the two do-

mains by keeping only the most similar features optimizing the solution of an optimal transport

problem [Villani, 2008] between the two domains.

Context of this thesis. The work presented in this thesis was carried out in the Data

Intelligence team of the Hubert Curien laboratory which is a joint research unit (UMR 5516)

between the Jean Monnet University of Saint-Étienne, the University of Lyon, the CNRS and

the Institut d'Optique Graduate School. The thesis was �nanced in part by a ministerial

fellowship and by the French project APRIORI ANR-18-CE23-0015.

Outline of the thesis. This manuscript is composed of a background chapter followed by

three chapters each presenting one of our contributions mentioned above.

• Chapter 1 starts by a general presentation of the supervised classi�cation paradigm which

is at the core of this thesis. Then, we present some machine learning algorithms that are

used in the following chapters. Finally, we brie�y describe some background in metric

learning [Kulis, 2013, Bellet et al., 2015], random Fourier features [Rahimi and Recht,

2008] and optimal transport [Villani, 2008] required for the understanding of our contri-

butions.

• Chapter 2 presents our �rst contribution which consists in the optimization of a metric

speci�cally dedicated to address the challenging problem of learning from highly imbal-

anced datasets. State-of-the-art metric learning methods usually learn a metric that

satis�es a set of constraints which typically aim at moving closer examples of the same

class while pushing away examples of di�erent labels. Our proposed method relies on

two strategies to deal with the class imbalance: (i) a selection of the set of constraints

taking into account the class imbalance and (ii) a decomposition of the loss into the sum

of terms capturing the constraints between examples of di�erent labels. Bene�ting from

the uniform stability framework [Bousquet and Elissee�, 2002], we prove a generalization

bound that has the main advantage to involve the proportion of rare examples and which

3

Introduction

encompasses standard metric learning bounds. We show experimentally that our two

complementary strategies allow us to reduce the negative impact of an increase in the

imbalance.

• Chapter 3 is dedicated to our second contribution. We propose a method that jointly

learns a classi�cation model and a representation of the data suited for the classi�cation

task at hand and generalizing well in the presence of few labeled examples. Our method

leverages two state-of-the-art learning strategies: gradient boosting [Friedman, 2001] to

build the classi�cation model, and random features to build the representation. Tradi-

tional gradient boosting methods induce an ensemble of regression models by adding one

by one to the ensemble the model that best learns the errors made by the previous ensem-

ble. The originality of our contribution comes from the fact that we train at each iteration

a kernel de�ned as a weighted sum of random Fourier features. We show experimentally

that the proposed method allows to learn e�ciently from non-linearly separable data a

compact latent representation.

• Chapter 4 is devoted to the presentation of our third contribution which falls into the scope

of domain adaptation where no labeled examples are available from the target domain.

The model can bene�t from an abundance of labeled data coming from a source domain

where the prediction task is the same, but with data acquired in di�erent conditions.

To reduce the discrepancy between the two domains, we introduce in this context a

feature selection method where the idea is to train a model using the most similar features

between the two domains, and to discard the most dissimilar ones. The originality of

the contribution is that the similarity of a feature across the two domains is given by

the solution of a problem based on the optimal transportation theory. We evaluate our

method on di�erent benchmarks and show that selecting the most similar features can

improve the performances compared to using all features. We also validate our algorithm

on a real world medical imaging task.

4

List of Publications

Publication in Journal

Léo Gautheron, Emilie Morvant, Amaury Habrard and Marc Sebban. Metric Learning from

Imbalanced Data with Generalization Guarantees. In Pattern Recognition Letters, volume 133,

pages 298-304. 2020 [Gautheron et al., 2020c].

Publications in International Conferences

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban and Valentina Zantedeschi. Landmark-based Ensemble Learning with Random Fourier

Features and Gradient Boosting. In European Conference on Machine Learning & Principles

and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020 [Gautheron et al.,

2020b].

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Metric Learning from

Imbalanced Data. In IEEE International Conference on Tools with Arti�cial Intelligence (IC-

TAI), 2019, Portland, United States [Gautheron et al., 2019b].

Léo Gautheron, Ievgen Redko and Carole Lartizien. Feature Selection for Unsupervised Do-

main Adaptation using Optimal Transport. In European Conference on Machine Learning &

Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2018, Dublin,

Ireland [Gautheron et al., 2018b].

Communications in National Conferences

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban and Valentina Zantedeschi. Apprentissage d'ensemble basé sur des points de repère

avec des caractéristiques de Fourier aléatoires et un renforcement du gradient. In Conférence

sur l'Apprentissage automatique (CAp), 2020 [Gautheron et al., 2020a].

Léo Gautheron, Pascal Germain, Amaury Habrard, Gaël Letarte, Emilie Morvant, Marc Seb-

5

List of Publications

ban and Valentina Zantedeschi. Revisite des �random Fourier features� basée sur l'apprentissage

PAC-Bayésien via des points d'intérêts. In Conférence sur l'Apprentissage automatique (CAp),

2019, Toulouse, France [Gautheron et al., 2019a].

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Apprentissage de métrique

pour la classi�cation supervisée de données déséquilibrées. In Conférence sur

l'Apprentissage automatique (CAp), 2018, Rouen, France [Gautheron et al., 2018a].

6

List of Notations

N The set of integers

R The set of real numbers

R+ The set of positive real numbers

m,n Number of examples

d Number of features describing each example

c Number of classes

Rd The set of real-valued vectors composed of d real numbers

Rm×d The set of real-valued matrices composed of m rows and d columns

X The input space where the examples of a given task belong and where X ⊆ Rd

Y The output space of a task, considered to be discrete with |Y| = c

Z The joint space between inputs and outputs with Z = X × Y
D A distribution over Z
x An example which is a real-valued vector with x ∈ X
y The label of an example with y ∈ Y
z A labeled example such that z = (x, y) and z ∈ Z
i.i.d. Independently and identically distributed

z ∼ D The i.i.d. draw of a labeled example z according to the distribution D
S A set of m labeled examples with S = {zi = (xi, yi)}mi=1

S ∼ Dm The i.i.d. draw of m labeled examples according to D
XS ,Y S The examples and labels of S such that XS = {xi}mi=1 and Y S = {yi}mi=1

zi The ith labeled example in a set of examples with i ∈ {1, . . . ,m}
xi The ith real value (or feature) of an example x with i ∈ {1, . . . , d} and xi ∈ R
XS> The transpose of XS ∈ Rm×d such that XS> ∈ Rd×m

[u, v] A continuous interval of real numbers that includes both u ∈ R and v ∈ R
{u, . . . , v} A discrete interval of integers going from u ∈ N to v ∈ N by increment of 1

{u, v, w} A set of values containing only the elements listed

7

8

Chapter 1

Background

Abstract

We give in this chapter a general presentation of the supervised classi�cation paradigm

which is at the core of this thesis. Then, we present some machine learning algorithms that

are used in the following chapters. Finally, we brie�y describe some background in metric

learning [Kulis, 2013, Bellet et al., 2015], random Fourier features [Rahimi and Recht, 2008]

and optimal transport [Villani, 2008] required for the understanding of our contributions.

1.1 Supervised learning

1.1.1 Learning from labeled data

Throughout this thesis, we consider supervised tasks where the training examples are d-dimensional

real-valued vectors each belonging to an input space X ⊆ Rd and are assigned a class label com-

ing from a discrete output space Y such that |Y| = c. We mainly consider in this thesis the

binary classi�cation setting where c = 2 and Y = {−1,+1}. Together, the spaces X and Y
form a joint space noted Z = X × Y.

When training a model, the supervised learning algorithms are provided with a training set

composed of m labeled examples S = {zi = (xi, yi)}mi=1 where ∀i ∈ {1, . . . ,m}, xi ∈ X , yi ∈ Y
and zi ∈ Z. We further de�ne the set of examples as the matrix XS = {xi}mi=1 such that

XS ∈ Rm×d and the set of labels as Y S = {yi}mi=1. We suppose that these n examples are i.i.d.

according to an unknown distribution D over Z and we note this i.i.d. draw of m elements by

S ∼ Dm.
Given a predictive task and an associated training set S drawn according to the distribution

D, the aim of supervised learning [Bishop, 2006] is to �nd using S a model that produces correct

predictions for the examples drawn according to D.
We consider models that are functions of the form h : X → L with L is the output set which

is mainly induced by the learning algorithm used and often L ⊆ R. Each function h belongs

to a family of functions H that depends on the learning algorithm used. Inside a family H, we
denote by a the parameters that characterize the model h and di�erentiate it from the other

9

1.1. Supervised learning

models in H, and we refer to the model h with its parameters as ha. Thus when searching for

a model producing correct predictions, we are actually searching inside a family of functions H
the parameters a inducing the model ha that handles the best the predictive tasks given. By

abuse of notation, we often refer as the trained model and its parameters as h instead of ha.

The output set L of the model h might be equal to the output space Y or not. For example

in binary classi�cation tasks, we can have L = R where the sign of the prediction indicates the

class +1 or −1, and the larger the absolute value of the prediction, the larger the con�dence in

the prediction. Similarly, we can encounter L = [0, 1] when the prediction corresponds to the

probability of belonging to a class. For classi�cation tasks with c > 2, we often have L which

is the set of vectors of size c where each element is a membership probability.

After a model has been trained, it can be used to make predictions on new examples supposed

to be also i.i.d. from the same distribution D. The aim is that the predictions of the learned

model h will not only be accurate on the examples in S, but also for any (x, y) ∼ D.
Usually, a smaller set of n labeled examples T = {zi = (xi, yi)}ni=1, called test set, is kept

aside during the training but used by the trained model to make predictions and compare them

with the true labels Y T in order to measure how well the model performs on new examples not

seen during the training. It is known that such a way to proceed allows us to get an unbiased

estimate of the generalization ability of the model. Figure 1.1 gives a graphical illustration of

the di�erent notations introduced. It shows a model that perfectly predicts the labels of a set

of examples. In practice, however, a model rarely produces perfect predictions. In order to

compare candidate models, we need performance measures.

1.1.2 Performance measures

Given a trained model h and a set of n examples T with labels Y T ∈ Yn, we de�ne Ŷ T ∈ Yn

the set of predicted labels over T using h. The goal of a performance measure is to compare the

predicted labels in Ŷ
T
with the actual labels in Y T and thus evaluate how good the predicted

labels are. In a classi�cation setting, a usual performance measure is the accuracy, de�ned as

accuracy =
Number of correctly classi�ed examples

Total number of examples

=

∑n
i=1

[
Ŷ T
i = Y T

i

]

n
,

where [.] is an indicator function equal to either 0 or 1. The accuracy takes a value in [0, 1]

with a higher value indicating more accurate predictions.

In this thesis, we often deal with binary classi�cation tasks with Y = {−1,+1} where an

example is either of the positive class (+1) or the negative class (-1). In such a context, we

can de�ne other performance measures based on the four quantities described in the confusion

matrix of Table 1.1. The accuracy can be rewritten with these notations as

accuracy =
TP + TN

TP + FN + FP + TN
.

10

Chapter 1. Background

−1 0 1 2

−0.5

0.0

0.5

1.0

Distribution D Model h Training set S Test set T

Figure 1.1: Illustration of a toy dataset divided into S with m = 30 (circles) and T with n = 10

(crosses). Each example x is described by d = 2 features (the real-values along the two axes

noted respectively x1 and x2) and by a label among Y = {blue, red}. S and T are supposed

to be drawn according to a distribution D represented in this toy example by the blue and red

concave hulls. Here, the goal is to learn a model using S that can predict the color of a point

given its x1 and x2 coordinates. Ideally, this model should predict correctly the label of any point

drawn from D (here drawn inside the two concave hulls). Here, we use the family of models H
of the form ha=(θ1,θ2,θ3) : x → (θ1 + θ2 cos(θ3x)) and select by hand the model with parameters

a = (0.26, 0.5, 3.1). As the predictions produced by ha are in L = R, they can be converted to a

value in Y by the rule �if x2 < ha(x1) then red else blue�. This model allows to predict with

no mistakes the labels of all examples in T and any possible example drawn according to D.

In imbalance learning, where the number of positive examples (y = +1) is much smaller than

the number of negatives (y = −1), the accuracy is not well suited to evaluate a model. Indeed,

a function predicting all examples as negative would have an accuracy close to 1 while de�nitely

missing the examples of the class of interest. Because of this, other performance measures are

available focusing more on the minority class. The �rst one called the precision is de�ned as

precision =
TP

TP + FP
,

and describes how well a model is precise on the positive examples by giving among the predicted

positive examples the proportion that are actually positive. A second one called the recall is

de�ned as

recall =
TP

TP + FN
.

It describes how well a model behaves to retrieve the positive examples by giving among the

actual positive examples the proportion that is recovered.

Maximizing either the precision or recall alone is not enough as it tends to decrease the other

one. Instead, a trade-o� between the two is preferred, such as the Fβ-measure [Van Rijsbergen,

11

1.1. Supervised learning

Table 1.1: Confusion matrix in binary classi�cation tasks. By comparing the actual labels Y T =

{yi}ni=1 with their corresponding predicted labels Ŷ
T

= {ŷi}ni=1 we can de�ne four quantities

called TP, FN, FP and TN that count the number of example in each of the four possible cases

such that TP + FN + FP + TN = n.

Predicted positives ŷ = +1 Predicted Negatives ŷ = −1

Positive examples y = +1 True Positives (TP) False Negatives (FN)

Negative examples y = −1 False Positives (FP) True Negatives (TN)

1974] de�ned as

Fβ-measure =
(1 + β2)precision× recall

(β2precision) + recall
,

where β > 1 gives more weight to the recall and 0 < β < 1 gives more weight to the precision.

Note that β = 1 gives an equal weight to both quantitie and leads to the well known F1-measure:

F1-measure =
2× precision× recall
precision + recall

.

Another performance measure taking into account the imbalance in the data is the Area

under the ROC Curve (AUC). It is based on the recall and on the false positive rate de�ned as

false positive rate =
FP

FP + TN
.

Note that unlike the previous performance measures that are computed using only Y T and Ŷ
T
,

the AUC requires to be computed with Y T and a set of di�erent predictions for di�erent values

of a threshold τ ∈ L de�ned as Ŷ
T

τ =
{

+1 if h(xi) ≥ τ otherwise−1 ∀i ∈ {1, . . . , n}
}
. The

AUC is then computed as the area under the ROC curve de�ned for di�erent values of τ and

associated predictions Ŷ
T

τ as f(false positive rate) = recall.

1.1.3 Loss functions

To guide the search for the parameters a inducing a model ha ∈ H having a good performance

measure, machine learning algorithms resort to loss functions ` : H × Z → R+ that measure

how much wrong a model is at predicting the value of a labeled example z ∈ Z. In the case

of binary classi�cation with L = R, the loss function that is usually minimized is called the

zero-one loss de�ned as

`(h, z) =
[
sign

(
h(x)

)
6= y
]
.

Minimizing the zero-one loss is equivalent to maximizing the accuracy. However, like the other

performance measures introduced in the previous section, this loss is NP-hard to optimize.

Instead, surrogate loss functions of the zero-one loss that are both convex and di�erentiable can

be used. For example, the exponential loss de�ned as follows

`(h, z) = exp
(
− yh(x)

)
,

12

Chapter 1. Background

−2 −1 0 1 2
yh(x)

0

1

2

3

4

`(
h
,z

)

Zero-one loss Exponential loss Hinge loss

Figure 1.2: Values of the zero-one loss and two of its surrogates for an example z = (x, y) and

a model h in function of the prediction h(x) ∈ R multiplied by y ∈ {−1,+1}.

is often used in boosting [Freund and Schapire, 1996] and it takes into account the disagreement

between the prediction h(x) and the actual label y. We can also cite the hinge loss de�ned as

`(h, z) =[1− yh(x)]+

= max
(
0, 1− yh(x)

)
,

often used with Support Vector Machines (SVM) [Vapnik, 1995] and which penalizes predictions

of h(x) having a di�erent sign than y or having a con�dence smaller than 1. We show the

behavior of these three losses in Figure 1.2.

Finally, we mention the least square loss de�ned as follows:

`(h, z) =
(
y − h(x)

)2
,

often used for regression tasks and in particular in gradient boosting [Friedman, 2001] and

penalizes predictions h(x) far from the label y ∈ R.
Computing a loss over all the distribution D leads to the true risk R(h) of a model and is

de�ned as the following expected value:

R(h) = E
z∼D

`(h, z).

Given a loss `, even if the goal is to select the model h∗ ∈ H leading to the smallest true risk,

in general we cannot �nd h∗ based only on the quantity R(h) because we cannot compute it as

D is unknown. What is done in practice is rather to minimize the empirical risk R̂(h) de�ned

for a training set S as the empirical mean of the loss:

R̂(h) =
1

m

m∑

i=1

`(h, zi).

13

1.1. Supervised learning

Minimizing the empirical risk might be insu�cient to obtain a good model, especially when

the number of training example is small. For example, a trivial model h that would memorize

all the training examples would have R̂(h) = 0 while being potentially wrong on many unseen

examples. This phenomenon is called over-�tting and it can be avoided in practice by learning

the parameters a of a model h that minimize a trade-o� between the empirical risk and a

regularization term on a:

arg min
a

R̂(ha) + λReg(a), (1.1)

where Reg(a) > 0 becomes larger when the complexity of the model ha increases, i.e., when

the model tends to over-�t. The aim of the regularization is to prevent to obtain too complex

models by imposing constraints on the parameters learned. In this case, the impact of the

regularization on the solution is controlled by a hyper-parameter λ > 0. A value of λ too close

to 0 may lead to a model that tends to over-�t, while a too large value of λ may lead to a model

that under-�ts, i.e., that has a large empirical risk. In general, it is not appropriate to learn the

weight of the regularization at the same time as the model parameters a to minimize Equation

(1.1) because doing so would always yield λ = 0 as best minimizer. Instead, the weight of the

regularization can be tuned in a di�erent learning step described in the following.

1.1.4 Parameter tuning

If a model h is trained with regularization to reduce its complexity, a hyper-parameter is used

to control the trade-o� between the capacity of h to �t the training data and the complexity of

h which is related to its generalization capacity. A possibility to tune λ is (i) to train several

models from S but for di�erent values of the hyper-parameter, and then (ii) to select the model

and the corresponding λ having the more accurate predictions on T . However, T is usually

kept aside to evaluate the model when all parameters are learned, simulating how it performs

on examples never seen before. Instead, this hyper-parameter can be tuned through a process

called cross-validation using only S.

The idea of cross-validation depicted in Figure 1.3 is �rst to partition S into a number of

disjoint subsets called folds. Then for each fold, a model is trained on the union of the remaining

subsets and used to compute a performance measure describing how correct its predictions on

this fold are. Finally, the hyper-parameter leading to the best performance measure averaged

over the folds can be selected to retrain the model on the entire set S. This model can latter

be used to compute the same performance measure on T , giving an estimate of the true risk.

Note that with more than one hyper-parameter, each having its own set of possible values,

it may be necessary to perform a grid-search during the cross-validation because changing the

value of a hyper-parameter may change the best value of another. The grid-search consists in

repeatedly learning and evaluating the model with cross-validation for every possible combina-

tion of hyper-parameters/values. This becomes rapidly expensive in computation time when

increasing the number of hyper-parameters and their numbers of possible values, especially

when the model requires itself a large amount of training time. Even so, the cross-validation

14

Chapter 1. Background

Training and test sets

Training set S Test set T

Training set separated in 5 folds

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Validation with fold 1 Validation with fold 2 Validation with fold 3

Training folds Validation fold

Validation with fold 4 Validation with fold 5

Figure 1.3: Illustration of the cross-validation process. The �rst plot in the �rst row shows a

dataset divided into a training and a test set. The second plot in the �rst row shows the �rst

cross-validation step consisting in partitioning S in subsets called folds, here in 5. Then in

the second row, for each fold, a model is trained on the assembled remaining folds and used to

compute a performance measure describing how correct its predictions on this fold are. Finally

the performance averaged over the folds can be used as a parameter tuning criterion.

step is useful in practice for methods having few hyper-parameters to tune.

1.1.5 Generalization guarantees

We described in the previous sections how supervised models can be trained and evaluated

using di�erent set of examples drawn according to the same unknown distribution D. However,
the quality of the evaluation is limited due to the fact that both S and T are �nite. Ideally,

we would like to give guarantees that the performance on the training set will be close to the

performances on all the possible examples drawn according to D. During the last decades,

several theories [Bartlett and Mendelson, 2002, Bousquet and Elissee�, 2002, McAllester, 1999,

Valiant, 1984, Vapnik and Chervonenkis, 1971] have been developed to analyze under which

conditions these quantities are close based on the widely used Probably Approximately Correct

framework [Valiant, 1984]. This can be done by upper-bounding by a value ε ≥ 0 the deviation

between the empirical risk and the true risk with a probability at least 1− δ with δ ∈ [0, 1] over

the random draw of m examples according to D:

P
S∼Dm

(∣∣R̂(h)−R(h)
∣∣ ≤ ε

)
≥ 1− δ,

15

1.1. Supervised learning

or in a less restrictive way

P
S∼Dm

(
R(h) ≤ R̂(h) + ε

)
≥ 1− δ.

Whatever the theoretical framework, the bounds typically behave as follows: (i) the more

con�dent we are (i.e., δ tends to 0), the looser the bound (i.e., ε tends to +∞) and (ii) the

bound becomes tighter (ε tends to 0) when m the number of training examples increases.

We now speci�cally present two theories: the uniform stability framework [Bousquet and

Elissee�, 2002] which we use to derive guarantees for our contribution in Chapter 2, and the

PAC-Bayesian theory [McAllester, 1999] that motivates our contribution in Chapter 3.

Uniform Stability The uniform stability framework [Bousquet and Elissee�, 2002] allows

one to derive generalization bounds for learning algorithms taking the form of a minimization

trade-o� between a convex loss function and a regularization. The bounds derived through this

framework have the advantage to take into consideration properties of the learning algorithm

such has its hyper-parameters, its regularization and its loss function. This framework can be

used to derive bounds for algorithms that have the following property called uniform stability.

De�nition 1 ([Bousquet and Elissee�, 2002] de�nition 6). Given a distribution D, a learning

algorithm has uniform stability β ≥ 0 with respect to a loss ` if ∀S ∼ Dm and ∀i ∈ {1, . . . ,m}
the following holds

sup
z∈S

∣∣`(h, z)− `(hi, z)
∣∣ ≤ β

where h is the model learned with the algorithm from S, and hi is the model learned with the

algorithm from Si, the set obtained by replacing the ith example in S by another also i.i.d. from

D.

This property tells us that the deviation of the loss on the training examples between h and

hi is upper bounded by a value β. The intuition is that learning a second model hi after a small

modi�cation of the training set gives almost the same model as h, where the di�erence between

the two models is quanti�ed by β. This value takes into account the regularization weight of

the algorithm and the number of examples in the training set, where a larger regularization

hyper-parameter and a larger number of examples allow to obtain a smaller β. And the smaller

β, the more precise the resulting bounds thanks to the following theorem:

Theorem 1 ([Bousquet and Elissee�, 2002] Th. 12). Consider a learning algorithm having

stability β with respect to a loss ` such that ∀S ∼ Dm and ∀z ∈ S then 0 ≤ `(h, z) ≤ M where

h is the model learned from S. Then for any m ≥ 1 with a probability at least 1 − δ over the

random choice of S ∼ Dm, we have the following bound on the true risk R(h):

R(h) ≤ R̂(h) + 2β +
(

4mβ +M)
)√ ln(1/δ)

2m
.

16

Chapter 1. Background

Unlike Vapnik-Chervonenkis dimension-based bounds [Vapnik and Chervonenkis, 1971], the

uniform stability framework allows us to derive guarantees even for family of hypotheses of

in�nite VC-dimension, by taking into account the properties of the algorithm. We will make

use of this setting in Chapter 2 to derive guarantees on our metric learning algorithm devoted

to address imbalanced learning problems.

PAC-Bayesian theory This theory [McAllester, 1999, Shawe-Taylor and Williamson, 1997]

allows one to derive generalization bounds for models de�ned as weighted majority votes over a

family of models H. To do so, two weighting distributions over H are considered. The �rst one

called prior distribution, noted p, gives a prior knowledge (before observing a training set) on

which of the models in H are better than the others to handle the task (it can be the uniform

distribution is the absence of prior knowledge). The second one called posterior distribution,

noted q, is learned from a training set of examples, and is then used to de�ne the following

majority vote model for binary classi�cation:

Bq(x) = sign
(
E
h∼q

h(x)
)
.

Usually, q is learned to minimize an upper bound on the true risk R(Bq) with respect to the

zero-one loss. Directly minimizing R(Bq) is di�cult. Instead, one can obtain an indirect bound

on R(Bq) by upper-bounding the so-called risk of the Gibbs classi�er, noted

R(Gq) = E
h∼q

R(h).

Indeed, one can relate the two with the following inequality (see Langford and Shawe-Taylor

[2003] Lemma 4.1):

R(Bq) ≤ 2R(Gq).

Then, one can use the following generalization bound on R(Gq) derived from McAllester [1999]:

P
S∼Dm

(
∀q on H, R(Gq) ≤ R̂(Gq) +

√
KL(q‖p) + ln 2

√
m
δ

2m

)
≥ 1− δ,

where KL(q‖p) = E
h∼q

ln q(h)
p(h) is the Kullback-Leibler divergence between the two distributions q

and p. There exists numerous other types of PAC-Bayesian bounds, but this one is interesting

as it allows one (see Germain et al. [2009]) to compute for any family of classi�ers H, any prior

p any regularization parameter β > 0 to tune, the minimizer q∗ of the bound with the following

closed-form equation

q∗(h) =
1

Z
p(h) exp

(
−βR̂(h)

)
,

where Z is a normalization constant. This bound and its minimizer are useful for us because

we base our contribution in Chapter 3 on a speci�c PAC-Bayesian analysis inspired from this

setting.

17

1.2. Classi�cation algorithms

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−0.5

0.0

0.5

1.0

1

2

3
4

5
6

7

Training set S One test point

Figure 1.4: Decision rule for the k-Nearest Neighbor algorithm. We display for one test point

(the black cross in the �gure) how its predicted color (red or blue) is selected among colored

dashed circles around the point enclosing a varying number of neighbors k ∈ {1, 3, 5, 7}. The

closest training points from the test point are numbered from 1 (closest) to 7 with respect to

the Euclidean distance. We see that with k ∈ {1, 3} the test point is classi�ed as red, and with

k ∈ {5, 7} the test point is classi�ed as blue.

1.2 Classi�cation algorithms

In this section, we present �ve classi�cation algorithms that will be used throughout the rest

of this thesis.

1.2.1 k-Nearest Neighbor (kNN)

This algorithm [Cover and Hart, 1967] does not involve the usual �rst step devoted to learning

a set of learnable parameters a as it has no parameter to learn. That is why kNN belongs to

the so-called lazy algorithms. Instead, this algorithm directly produces predictions based on

a training set S, a distance function and an integer k. Predicting the class of an example x

requires to compute the distance between x and all the m examples in S and to retain the k

closest examples in S. The algorithm then returns as prediction for x the most represented

class among these k nearest neighbors. We show in Figure 1.4 how a class prediction is made

in function of an increasing value of k. Figure 1.5 depicts decision boundaries produced for

di�erent values of k. Note that we can see k as a hyper-parameter to tune which regularizes in

some way the classi�er. Indeed, a small value tends to over-�t the data (the decision is made

very locally), while a large value tends to under-�t (the classi�er tends to predict the majority

class).

To avoid having ties when selecting the most represented class, a possibility in binary

18

Chapter 1. Background

k = 1

Training set S Test set T

k = 3 k = 5

k = 7 k = 9 k = 11

Figure 1.5: Decision boundary for the k-Nearest Neighbor algorithm for di�erent values of k. A

point falling in a red (resp. blue) area is classi�ed as red (resp. blue). Here, by increasing k the

model tends to under-�t the data as some training example become incorrectly classi�ed.

classi�cation is to limit ourselves to odd values of k. When dealing with multi-class problems,

a solution [Dudani, 1976] is to give a weight to each neighbor inversely proportional to its

distance, and to choose the class having the largest sum of weights.

A key component of the kNN algorithm is the distance function used to compute the distance

between the examples. This distance can be learned with the help of metric learning algorithms

[Kulis, 2013, Bellet et al., 2015] to build new distance functions more suited than the Euclidean

distance. Our contribution in Chapter 2 is based on this idea, and we will show how to learn

an e�ective metric in the presence of few positive examples.

1.2.2 Support Vector Machine (SVM)

SVM [Boser et al., 1992, Cortes and Vapnik, 1995] is a learning algorithm that builds hyper-

planes that can be used to classify examples depending on which of the two sides they are with

the following rule:

h(x) = sign(w · x+ b),

where the sign of (w · x+ b) indicates which side x is from the hyper-plane, and the absolute

value indicates how far it is. The parameters w and b de�ne the hyper-plane and are learned

to optimize a regularization/risk trade-o� de�ned as follows:

min
w,b,ξ

1

2
w>w + C

m∑

i=1

ξi (1.2)

subject to yi(w · xi + b) ≥ 1− ξi,
ξi ≥ 0, ∀i ∈ {1, . . . ,m},

19

1.2. Classi�cation algorithms

Linear SVM C = 0.05

Model Model±margin Training set S Test set T

-1.6

-0.0

1.5
Linear SVM C = 1

-3.0

-0.1

2.9
Linear SVM C = 20

-4.0

-0.2

3.7

Figure 1.6: SVM model for di�erent values of the parameter C ∈ {0.05, 1, 20}. A value of C

close to 0 privileges models with a large margin but with the downside of having more examples

violating the constraint of being on the correct side of the hyper-plane at a distance larger than

the margin. A large value of C concentrates on minimizing the number of violated constraints

and has for e�ect to decrease the safety margin. The blue (resp. red) examples are assigned the

label −1 (resp. +1), and the SVM model returns predictions in R (in [−4, 3.7] with C = 20)

where a negative (resp. positive) prediction corresponds to the blue (resp. red) class.

where ξi are slack variables and where (i) the examples are constrained to be on the correct

side of the hyper-plane (risk minimization) with the soft constraint yi(w · xi + b) ≥ 1 − ξi

with
∑m

i=1 ξi as small as possible, and (ii) the examples are constrained to have a distance

to the hyper-plane greater than a value called margin that is maximized (regularization) by

minimizing the norm of w. As shown in Figure 1.6, a large value of C > 0 tends to over-�t

by making the soft constraint hard, while a C close to 0 allows to produce more regularized

models with a large margin.

Problem 1.2 is often called primal problem. In practice, we rather resort to the optimization

of its dual counterpart for computational reasons and because the dual allows to use kernel

functions. The dual problem is de�ned as follows:

min
α

f(α) =
1

2

m∑

i=1

m∑

j=1

yiyjαiαjk(xi,xj)−
m∑

i=1

αi

subject to
m∑

i=1

yiαi = 0,

and 0 ≤ αi ≤ C, ∀i ∈ {1, . . . ,m},

where α can be learned e�ciently by updating iteratively only two carefully selected values in

the vector (to enforce the constraints) until convergence [Fan et al., 2005].

The function k : Rd × Rd → R is called a kernel, and it measures a similarity between its

two arguments. Using this formulation, the decision function is de�ned as

h(x) = sign

(
m∑

i=1

yiαik(xi,x) + b

)
,

20

Chapter 1. Background

Linear SVM C = 1

-2.8

-0.1

2.6
RBF SVM C = 1, γ = 10

-1.1

0.0

1.1

Figure 1.7: SVM model for a linear and an RBF kernel. The linear kernel allows to build a

linear separator. The RBF kernel enables to learn a linear separator in a higher dimensional

representation space which induces a non linear separator in the initial space.

where by plugging the linear kernel de�ned as the scalar product between two points

k(x,x′) = x · x′,

we obtain the same formulation as the one from the primal problem with

w =
m∑

i=1

yiαixi.

Using this formulation, b is not learned but is deduced from α (see [Chang and Lin, 2011]) as

b = −
∑m

i:0<αi<C
yi∇if(α)

|{i|0 < αi < C}| ,

where ∇if(α) is the ith component of the partial derivative of f with respect to α.

The use of kernel functions di�erent from the linear kernel is interesting because it allows

to compare points in a di�erent representation space without requiring to compute explicitely

the (costly) projection of the points in that space [Mercer, 1909]. This cheap computation of

the scalar product through a kernel function is known as �kernel trick�. For example, the RBF

kernel

k(x,x′) = exp(−γ‖x− x′‖2),

induces a representation space with an in�nite number of dimensions, with γ > 0 a parameter

to tune. For this kernel, the �kernel trick� is useful as otherwise it would be impossible to �rst

project the points in the space before computing their scalar products. Instead, the use of the

formula of the RBF kernel is cheap to compute and is equivalent to the scalar product between

the points in the in�nite dimensional space. Furthermore, when using the kernel function to

compare the points in the dual formulation of the SVM, this allows to build a linear separator

in the representation space induced by the kernel. The advantage is that if the examples are not

linearly separable in their original representation, they may be separable in the space induced

21

1.2. Classi�cation algorithms

by the kernel. This behavior is shown in Figure 1.7 where a linear separator in the original

space fails to separate the points using the linear kernel. On the other hand, with the RBF

kernel, the linear separator in the space induced by the kernel becomes a non-linear separator

in the original space that successfully separates the points.

1.2.3 Decision tree

In machine learning, decision trees are models made of a set of nodes connected between each

other through parent/child connections. These trees usually starts at a unique node called root

that has no parent, and ends at di�erent nodes called leaves that have no child. In classi�cation,

each leaf corresponds to a single class and all examples falling in a leaf are predicted as belonging

to its corresponding class. In regression, a leaf gives as output the mean target value of its

containing training examples. Current implementations of decision trees are often based on the

work of Breiman et al. [1984] where the trees are binary, meaning that each node except the

leaves has two child, and that an example is assigned to the left or right child depending if a

test on a single feature of this example is veri�ed or not.

The complexity of the trees can be controlled by its depth which is the maximum number of

nodes that an example can pass through before obtaining its prediction. Intuitively, having no

limit on the depth can lead to over-�t the data as one branch could be built to predict exactly

the label of each training example. On the other hand, having a depth near 1 may produce a

model that under-�ts the data.

The goal when learning a tree is to �nd at each node the best feature and the best test on

the value of this feature to split the training examples located in that node. For classi�cation,

this notion of �best� is quanti�ed by a criterion called the Gini impurity:

GI(N) =
c∑

i=1

pi(1− pi),

where pi is the proportion of examples of the ith class in the node N . In binary classi�cation,

GI ∈ [0, 0.5] where GI = 0 indicates that there are examples of only one class in the node, and

GI = 0.5 indicates that there are as many examples of both classes in the node. Decision tree

algorithms [Breiman et al., 1984] aim to �nd a feature and a threshold that lead to a decrease

of the Gini impurity (see Figure 1.8 for an example).

1.2.4 Neural networks

In Rosenblatt [1958], a simple neural network, called perceptron, is introduced as follows

h(x) = g(w · x+ b),

where g is called an activation function and the goal is to learn the vector w and the bias b.

It is worth noting that it takes a similar form as that of a linear SVM where g = sign. A

common type of neural networks is the multi-layer perceptron built upon the aggregation of

22

Chapter 1. Background

several perceptrons organized in layers. For example, a basic 3-layer perceptron can be built as

follows

h3(x) = g3

(
w3 ·

(
h1(x) = g1(w1 · x+ b1)

h2(x) = g2(w2 · x+ b2)

)
+ b3

)
.

It has three layers (i) the input layer composed of d neurons which is the number of features

in the input space, (ii) a hidden layer composed of two neurons de�ned by the two perceptrons

h1 and h2 and (iii) the output layer composed of one neuron de�ned by the last perceptron h3.

Most neural networks can be seen as multi-layer perceptrons where the di�erences between

them can be: the number of hidden layers, the number of neurons in each layer, the activation

functions, the algorithm used to learn the parameters w and b of each perceptron...

There has been during the last years a large attention to deep neural networks [Goodfellow

et al., 2016] due to their excellent capability to learn from large set of examples. Current state-

of-the art deep neural networks are especially good among others to address computer visions

and natural language processing tasks.

An interesting characteristics of deep neural networks is that we can reuse a part of these

networks to handle a di�erent task. This is especially convenient as training these models can

be very expensive in terms of computation time and hardware infrastructure. For example,

the pioneering work of Krizhevsky et al. [2012] train a deep neural network using millions of

images to �nd if an object among 1000 classes of object is present in an image. This pre-trained

network can be re-used for a di�erent task involving images, for example by using the network

as a feature extractor where the features are produced as the output of one of its hidden layers.

This strategy is exploited in Chapter 4 to quickly extract a set of features for images that are

used to evaluate our proposed method.

1.2.5 Boosting

The idea behind boosting [Schapire, 1990] is to use a machine learning algorithm to build

iteratively a set of models h and then to return as �nal predictor an aggregation of these

models. In binary classi�cation, the �nal boosted model noted H takes the form of the following

weighted sum:

H(x) = sign

(
T∑

t=1

αthat(x)

)
,

where αt is the weight given to the tth model, and where T is the number of models trained,

i.e., the number of iterations of the algorithm. The individual models are usually trained to be

complementary to the others.

In the seminal work of Schapire and Singer [1999], the algorithm Adaboost resorts to the min-

imization of the exponential loss by gradient descent. At each iteration, the distribution of the

training examples is updated, giving more weight to the examples that have been miss-classi�ed

by the previous classi�ers. One advantage of Adaboost is that, under a weak assumption over

the base classi�ers, the �nal model comes with strong generalization guarantees.

23

1.3. Methodological building blocks

In the gradient boosting framework proposed by Friedman [2001], at each iteration, a re-

gression model is trained to predict the residuals of the examples de�ned as minus the partial

derivative of any empirical loss with respect to the current ensemble. The goal is to correct

step by step the errors made by the previous ensemble.

We show in Figure 1.9 the behavior of Adaboost [Schapire and Singer, 1999] and Gradient

Boosting [Friedman, 2001] where we plug decision trees of depth 1 as base models. We can

see at the �rst iteration that a single tree of depth 1 fails to separate well the data. However,

when increasing the number of trees, we quickly obtain a model that correctly predicts all the

training examples.

1.3 Methodological building blocks

We investigate in this thesis how to obtain relevant representations of the data in the di�cult

setting where only a few examples of interest are available to learn from. The goal is that a model

trained with the new representation will present better performances than a model learned upon

the original representation. In the following, we recall three frameworks used as building blocks

in our contributions. Metric learning (see the two surveys: [Bellet et al., 2015, Kulis, 2013]),

is the basis of Chapter 2 where we optimize a metric inducing a new representation space that

tends to be more e�ective than state-of-the-art metrics in the presence of a class imbalance.

Kernel random Fourier features [Rahimi and Recht, 2008] are used in Chapter 3 to learn new

features helping to generalize with few labeled examples. Finally the optimal transportation

theory [Villani, 2008] is exploited in Chapter 4 to reduce the discrepancy between the features

of a target domain where no labels are available, and the features of a source labeled set.

1.3.1 Metric learning

Metric learning is a sub-�eld of representation learning that consists in designing a pairwise

function able to capture the dis/similarity between two data points. This is a key issue in

machine learning as such metrics are at the core of many algorithms, like kNN, SVMs...

Many metric learning algorithms are of the family of methods that construct a generalized

version of the Mahalanobis distance [Mahalanobis, 1936] de�ned as

dM(x,x′) =
√

(x− x′)>M(x− x′)

where M ∈ Rd×d is symmetric and positive semi-de�nite (PSD), i.e., for all non-null vector

x ∈ Rd then
x>Mx ≥ 0.

This distance allows to retrieve the Euclidean distance by setting M as the identity matrix of

dimension d. Because M is PSD, another interesting property is that there exists a matrix

L ∈ Rr×d where r is the rank of M such that

M = L>L.

24

Chapter 1. Background

Thus, the Mahalanobis distance between two points x and x′ is equal to their Euclidean distance

after having projected linearly x and x′ in the r-dimensional space, i.e.,

dM(x,x′) =
√

(x− x′)>M(x− x′)

=
√

(Lx− Lx′)>(Lx− Lx′) .

The goal of metric learning algorithms is then to construct the matrix M or L that induces

a distance measure suited for a given task. Most metric learning algorithms optimize a loss

function which aims at bringing closer examples of the same label while pushing apart examples

of di�erent labels. In practice, metric learning is usually performed with pairwise constraints�

two data points x and x′ should be dis/similar [Davis et al., 2007, Lu et al., 2013, Weinberger

and Saul, 2009, Xiang et al., 2008, Xing et al., 2003, Zadeh et al., 2016]�or relative constraints�

a data point x should be more similar to another x′ than to a third one x′′ [Lee et al., 2008,

Schultz and Joachims, 2004, Weinberger and Saul, 2009, Zheng et al., 2011].

We will show in Chapter 2 that when learning with few labeled examples of a class but a

large amount of another class, existing metric learning algorithms tend to favor the majority

class. To face this issue, we will propose a new metric learning algorithm aiming to be as

good on both classes of examples. We will exploit the uniform stability framework to derive

guarantees on the learned metric M.

1.3.2 Random Fourier features (RFF)

The RFF framework introduced by Rahimi and Recht [2008] allows to approximate kernel

functions in order to speed up the learning of algorithms using such kernels. A kernel can be

de�ned as a function

k : Rd × Rd → R,

that takes as input two examples and returns a measure of similarity between them. This

framework allows to approximate the set of kernels that are shift-invariant, meaning by abuse

of notation that

k(x,x′) = k(0,x− x′) = k(x− x′) = k(δ) with δ = x− x′.

When a kernel is shift-invariant, it is possible to de�ne a distribution p(ω) as the Fourier

transform of the kernel [Rudin, 1962]:

p(ω) =
1

(2π)d

∫

Rd

k(δ)e−iω·δdδ. (1.3)

In this context, Rahimi and Recht [2008] show that the kernel can be rewritten as

k(x− x′) = E
ω∼p

cos
(
ω · (x− x′)

)

' 1

K

K∑

j=1

cos(ωj · (x− x′)),

25

1.3. Methodological building blocks

where the larger the number of random features K, the more accurate the resulting approxi-

mation of the kernel. Given K vectors {ωj}Kj=1 ∼ pK , they further propose to approximate the

kernel as

k(x,x′) ' z(x) · z(x′),

where z is a mapping in the random feature space de�ned as

z(x) =

√
1

K
[cos(ω1 · x), . . . , cos(ωK · x), sin(ω1 · x), . . . , sin(ωK · x)] .

The interest of this framework is to project the points in the random feature space, and

then to train a linear model in this space. Doing so, we bene�t both from the non-linearity

induced by the kernel approximated, and the fast training time of the linear model. However,

if the considered kernel is not suited for the task at hand, its approximated version will not be

more suited because it only tends to give the same value as the kernel. In this sense, the RFF

method only allows to speed up the learning time of a kernel algorithm without improving its

e�ectiveness to handle a task. To obtain a new kernel suited for a given task, several works

have extended this technique by allowing one to adapt the RFF approximation directly from the

labeled training data [Agrawal et al., 2019, Letarte et al., 2019, Sinha and Duchi, 2016]. This is

also the focus of our contribution in Chapter 3 where we build at the same time a representation

of the data with RFF and a classi�cation model with gradient boosting to obtain a model that

generalizes well in the presence of few labeled examples.

1.3.3 Optimal transport

The theory of optimal transport has been introduced by Monge [1781] and was recently revisited

by Villani [2008]. In essence, this theory gives a mathematically founded tool that allows to

align arbitrary probability distributions in an optimal way.

In the discrete case, it can be formalized as follows. Let D̂S

X = 1
m

∑m
i=1 δxS

i
and D̂T

X =
1
n

∑n
i=1 δxT

i
be two empirical probability measures de�ned as uniformly weighted sums of Diracs

with mass at locations de�ned on two sets S = (XS ,Y S) with XS ∈ Rm×d and T = (XT ,Y T)

with XT ∈ Rn×d drawn according to arbitrary probability distributions DS and DT . The

Monge-Kantorovich problem consists in �nding a probabilistic coupling γ de�ned as a joint

probability distribution over XS ×XT that minimizes the cost of transport w.r.t. a metric

c : X S ×X T → R+:

γ∗ = arg min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F , (1.4)

where 〈·,·〉F is the Frobenius dot product, Π(D̂S

X , D̂
T

X) = {γ ∈ Rm×n+ |γ1 = D̂S

X ,γ
>1 = D̂T

X }
is a set of doubly stochastic matrices and C is a dissimilarity matrix, i.e., for xSi ∈ XS and

xTj ∈XT , we have Cij = c(xSi ,x
T
j) which de�nes the energy needed to move a probability mass

from xSi to xTj . This problem admits one or several optimal solutions γ∗ and de�nes a metric

26

Chapter 1. Background

on the space of probability measures (called the Wasserstein distance) as follows:

W (D̂S

X , D̂
T

X) = min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F . (1.5)

We supply an example showing the computation of γ∗ on a toy example in Figure 1.10.

Despite its elegance and simplicity, the formulation of optimal transport given in Equation

(1.4) (abbreviated OT) is a Linear Programming problem that does not scale well because of

its computational complexity.

In order to tackle this issue, Cuturi [2013] proposed to add the entropic regularization of γ

to the Equation (1.4) leading to the following optimization problem:

γ∗ = arg min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F −
1

λ
E(γ), (1.6)

where E(γ) = −∑ij γij log γij . The regularized optimal transport (abbreviated OT2) allows

the source instances to be transported more or less uniformly to the target instances based

on a hyper-parameter λ and can be optimized e�ciently with the linear time Sinkhorn-Knopp

algorithm [Knight, 2008].

Based on the solutions given by Equations (1.4) and (1.6), we propose in Chapter 4 in the

unsupervised domain adaptation context where no labeled examples are available in a target

domain, to measure how similar the features of a source domain with labeled examples are

to the features of the target domain. These similarities can then be used to build a better

classi�cation model on the target domain by discarding the most dissimilar features between

the two domains.

27

1.3. Methodological building blocks

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=1

Training set S Test set T

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=2

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=3

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=4

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=5

−1 0 1 2

−0.5

0.0

0.5

1.0

depth=6

y ≤ -0.033
gini = 0.5

samples = 30
value = [15, 15]

gini = 0.0
samples = 10
value = [0, 10]

True

x ≤ 1.53
gini = 0.375

samples = 20
value = [15, 5]

False

y ≤ 0.617
gini = 0.208

samples = 17
value = [15, 2]

gini = 0.0
samples = 3
value = [0, 3]

y ≤ 0.595
gini = 0.346
samples = 9
value = [7, 2]

gini = 0.0
samples = 8
value = [8, 0]

gini = 0.219
samples = 8
value = [7, 1]

gini = 0.0
samples = 1
value = [0, 1]

Figure 1.8: Partition of the space di�erent depths of the decision tree (top) and the decision

tree with depth 4 (bottom). Larger depths lead to models that better �t the training set, but that

may behave poorly on the test examples.

28

Chapter 1. Background

A
da

b
oo

st

Iteration 1

-0.8

0.0

0.8
Iteration 5

-3.6

0.0

3.6
Iteration 10

-4.3

0.0

4.3

G
ra

di
en

t
B

oo
st

in
g

-0.5

0.2

1.0

-1.2

0.7

2.5

-1.7

0.4

2.5

Figure 1.9: Adaboost model [Schapire and Singer, 1999] and Gradient Boosting model [Fried-

man, 2001] with decision trees of depth 1 as base learner using 1, 5 and 10 iterations. Note that

the white areas are where the predictions are equal to 0 which are considered a positive value

(i.e., the red class).

m

d

Input: XS

5 3

4 0

1 3

d

Input: XT

0

5

1

0

5

4

1

4

Input: C

25

1

9

5

17

29

13

25

5

13

1

5

Input: D̂S

X

1
3

1
3

1
3

n

Input: D̂T

X

1
4

1
4

1
4

1
4

Output: γ∗

0

1
4

0

1
4

0

0

1
12

0

1
6

0

1
12

1
6

Figure 1.10: Example of an optimal transport problem between two sets of examples XS and

XT where C is the squared Euclidean distance and both D̂S

X and D̂T

X are uniform empirical

probability measures.

29

30

Chapter 2

Metric Learning from Imbalanced Data

with Generalization Guarantees

This chapter is based on the following publications

Léo Gautheron, Emilie Morvant, Amaury Habrard and Marc Sebban. Metric Learning from

Imbalanced Data with Generalization Guarantees. In Pattern Recognition Letters, volume 133,

pages 298-304. 2020 [Gautheron et al., 2020c].

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Metric Learning from

Imbalanced Data. In IEEE International Conference on Tools with Arti�cial Intelligence (IC-

TAI), 2019, Portland, United States [Gautheron et al., 2019b].

Léo Gautheron, Amaury Habrard, Emilie Morvant and Marc Sebban. Apprentissage de métrique

pour la classi�cation supervisée de données déséquilibrées. In Conférence sur

l'Apprentissage automatique (CAp), 2018, Rouen, France [Gautheron et al., 2018a].

Abstract

Since many machine learning algorithms require a distance metric to capture dis/simila-

rities between data points, metric learning has received much attention during the past two

decades. Surprisingly, very few methods have focused on learning a metric in an imbalanced

scenario where the number of positive examples is much smaller than the negatives, and

even fewer derived theoretical guarantees in this setting. Here, we address this di�cult task

and design a new Mahalanobis metric learning algorithm (IML) which deals with class

imbalance. We further prove a generalization bound involving the proportion of positive

examples using the uniform stability framework. The empirical study performed on a wide

range of datasets shows the e�ciency of IML.

31

2.1. Introduction and related work

2.1 Introduction and related work

In this chapter, we focus on the family of metric learning algorithms (see the two surveys: [Bellet

et al., 2015, Kulis, 2013]) that construct a generalized version of the Mahalanobis distance in

the presence of a class of rare examples and another class containing most of the training data.

Two famous representatives of Mahalanobis distance learning are LMNN (Large Mar-

gin Nearest Neighbor [Weinberger and Saul, 2009]) and ITML (Information-Theoretic Metric

Learning [Davis et al., 2007]), which are both designed to improve the accuracy in the latent

space of the kNN classi�cation rule recalled in Section 1.2.1.

The idea behind LMNN is to learn the matrix M that parametrizes the Mahalanobis

distance and satis�es a set of similar constraints S, and a set of relative constraints R, de�ned
as

S = {(xi,xj) | yi = yj and xj belongs to the k neighbors of xi} ,
and R = {(xi,xj ,xk) | (xi,xj) ∈ S and yi 6= yk} .

Then, the metric is learned by optimizing the following problem:

arg min
M�0

(1− µ)
∑

(xi,xj)∈S
d2
M(xi,xj) + µ

∑

i,j,k

ξijk

s.t. d2
M(xi,xk)− d2

M(xi,xj) ≥ 1− ξijk ∀(xi,xj ,xk) ∈ R.

whereM � 0 denotes the constraint thatM should be PSD, as introduced in Section 1.3.1. The

idea of this method is to optimize a trade-o� (controlled by µ ∈ [0, 1]) between a minimization

of the distance between similar pairs (xi,xj), and under the constraint that any example xk

with a di�erent label is farther from xi than from xj . In practice, these constraints are relaxed

through the use of slack variables ξijk.

The ITML algorithm also considers two randomly selected sets of similar and dissimilar

pairs noted S and D, and optimizes M by minimizing the following problem:

arg min
M�0

Dld(M,M0)

s.t. d2
M(xi,xj) ≤ u ∀(xi,xj) ∈ S
d2
M(xi,xj) ≥ v ∀(xi,xj) ∈ D,

where u and v are safety margin parameters. The goal is to learn a matrix M su�ciently close

to a prior matrix M0 under the LogDet divergence Dld and the constraints that the examples

in S must be closer than a value u and that the instances in D must be signi�cantly far away

with a distance larger than v where v > u.

Without being exhaustive, another kind of Mahalanobis distance learning algorithm is given

with GMML (Geometric Mean Metric Learning) [Zadeh et al., 2016] that also considers two

32

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

50% 40% 30% 20% 10%
Percentage of positive examples

0
10
20
30
40
50
60
70
80
90

100 Accuracy
GMML ITML LMNN

50% 40% 30% 20% 10%
Percentage of positive examples

F1-measure

Figure 2.1: Illustration on the spectfheart dataset of the negative impact of classic metric

learning algorithms when facing an increasing imbalance in the dataset. On the left, as the pro-

portion of minority examples decreases (the positive class), the 3NN algorithm with the learned

metrics tends to classify all the examples as members of the majority class, with an accuracy

close to 100%. On the right, using the F1-measure (see its de�nition given in Section 1.1.2) ,

we see that the learned metrics plugged in a kNN actually miss many positives.

random sets of pairs S and D and whose objective function is:

arg min
M�0

∑

(xi,xj)∈S
dM(xi,xj) +

∑

(xi,xj)∈D
dM−1(xi,xj).

To �nd the matrix M, they consider the two following matrices:

S =
∑

(xi,xj)∈S
(xi − xj)(xi − xj)>

D =
∑

(xi,xj)∈D
(xi − xj)(xi − xj)>.

The goal is to �nd M, inside the set of PSD matrices, along the geodesic curve between D and

S−1 parameterized by t ∈ [0, 1] that controls if it is closer to D or S−1. The main advantage

of this method is that M can be computed explicitly from S−1 and D and does not require a

costly optimization process as for LMNN and ITML.

In light of these learning procedures, it is worth noticing that the loss functions optimized

in LMNN, ITML and GMML (and in most pairwise metric learning methods) tend to favor

the majority class as there is no distinction between the constraints involving examples of

the majority class and the constraints on the minority class. This strategy is thus not well

suited when dealing with imbalanced datasets. An illustration of this phenomenon on the

spectfheart dataset from the UCI1 repository is shown in Figure 2.1. We observe that

decreasing the proportion of minority examples tends to generate a metric which classi�es (with

1https://archive.ics.uci.edu/ml/datasets.html

33

https://archive.ics.uci.edu/ml/datasets.html

2.1. Introduction and related work

a kNN rule) all the examples as the majority class, thus leading to an accuracy close to 100%.

On the other hand, the F1-measure [Van Rijsbergen, 1974], commonly2 used in imbalanced

settings [Chandola et al., 2009, López et al., 2013], decreases with the proportion of positives,

showing that the classi�er missed many positives, usually considered as the examples of interest.

This problem of learning from imbalanced data has been widely tackled in the litera-

ture [Branco et al., 2016, He and Garcia, 2009]. Classic methods typically make use of over/under-

sampling techniques [Drummond and Holte, 2003, Estabrooks et al., 2004, Liu et al., 2008, Ag-

garwal, 2013] or create synthetic examples in the neighborhood of the minority class�e.g., using

SMOTE-like strategies [Chawla et al., 2002, 2003, Han et al., 2005] or resorting to adversarial

techniques [Douzas and Bacao, 2018]. However, these methods may lead to over or under-�tting

and are often subject to an inability to generate enough diversity, especially in a highly imbal-

anced scenario. Other strategies aim at addressing imbalanced situations directly during the

learning process. They include cost-sensitive methods [Elkan, 2001, Zadrozny et al., 2003] which

require prior knowledge on the miss-classi�cation costs, the optimization of imbalance-aware

criteria [Frery et al., 2017, McFee and Lanckriet, 2010, Vogel et al., 2018] which are often non

convex, or ensemble methods based on bagging and boosting strategies [Galar et al., 2011] that

can be computationally expensive.

Unlike the state of the art, we suggest in this chapter to address the problem of learning

from imbalanced data by optimizing a metric suited to scenarios where the positive data are

very scarce. As far as we know, very few methods were designed in this setting. Feng et al.

[2018] propose to regularize a standard metric learning problem by using the KL-divergence

between the classes. Wang et al. [2018] propose IMLS that learns a classic metric and then

performs a sampling on the training data to account the imbalance. However, as we will see in

our experimental study, better performances can be achieved by resorting to a metric dedicated

speci�cally to deal with the imbalance of the application at hand. Deep metric learning methods

have also received attention by the community to address the problem of imbalanced data [Liu

et al., 2019, Wang et al., 2019]. However these methods often require large training datasets, like

in visual tasks, a requirement which is not always ful�lled by the application at hand. Moreover,

it is worth noticing that none of the previous approaches come with theoretical guarantees, a

gap we will �ll in this chapter. In order to implicitly control the rates of false positives and

false negatives, we propose a new algorithm, called IML for Imbalanced Metric Learning, which

accounts carefully the nature of the pairwise constraints (by decomposing them with respect

to the labels involved in the pairs) and weights their impact in the loss function so as to

account the imbalance. Beyond this algorithmic contribution, we further provide a theoretical

analysis of IML using the uniform stability framework [Bousquet and Elissee�, 2002] presented

in Section 1.1.5. We derive the �rst generalization bound which has the advantage to involve

the proportion of minority examples. This bound provides some insight into the way to tune

2As indicated in Section 1.1.2, the F1-measure is much more adapted to imbalanced scenarios since it does

not involve the true negatives but considers both the false positives and the false negatives.

34

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

the weighting parameters to counterbalance the negative impact of imbalanced datasets.

Organization of the chapter. Section 2.2 introduces the notations and the principle of

classical Mahalanobis metric learning. Section 2.3 describes our algorithm IML which takes

the form of a simple regularized convex problem. Section 2.4 is dedicated to the theoretical

analysis. We perform an experimental study of our approach in Section 2.5 before concluding

in Section 2.6.

2.2 Notations and setting

In this chapter, we deal with binary classi�cation tasks and follow the same notations as in

Chapter 1. We assume that the training set is de�ned as S = S+ ∪ S−, with S+ the set

of positive examples and S− the set of negative examples such that the number of positives

m+ = |S+| is smaller than the number of negatives m− = |S−| (we say that +1 is the minority

class and −1 the majority one). We aim at constructing a Mahalanobis distance which induces

a new space in which a kNN classi�er will work well on both classes.

Mahalanobis metric learning algorithms [Bellet et al., 2015, Cao et al., 2016, Jin et al., 2009]

can usually be expressed as follows:

min
M�0

F (M) =
1

m2

∑

(z,z′)∈S2

`(M, z, z′) + λReg(M), (2.1)

where one wants to minimize the trade-o� between a convex loss ` over all pairs of examples

and a regularization Reg under the PSD constraint M � 0.

The major drawback of this classical formulation is that the loss gives the same impor-

tance to any pair of labeled examples (z, z′) whatever the labels y and y′. Intuitively, this is

not well suited to imbalanced scenarios where one wants to focus more on the minority class

(think, for example, about anomaly detection [Chandola et al., 2009]). Some metric learning

algorithms [Weinberger and Saul, 2009, Zadeh et al., 2016] allow to weight the role played by

the similar and dissimilar/relative constraints, but they do not directly take into account the

labels of the examples.

To tackle these drawbacks, we propose in the next section IML, a metric learning algorithm

able to deal with imbalanced data.

2.3 IML: Imbalanced Metric Learning

Our algorithm is built on the simple idea consisting in decomposing further the sets of similar

and dissimilar constraints based on the two labels involved in the constraints. Each set can then

be weighted di�erently during the optimization to reduce the negative e�ect of the imbalance.

Starting from Equation (2.1), let us decompose the loss function `; we have for all (z, z′) ∈ Z2

35

2.3. IML: Imbalanced Metric Learning

1

1

Similarity constraints

1 κ

1 κ

Dissimilarity constraints

Figure 2.2: Illustration of the behavior of our loss ` de�ned in Equation (2.2). On the left, the

similarity constraints (loss `1) aim at bringing examples of the same class at a distance less

than 1. On the right, the dissimilarity constraints (loss `2) aim at pushing away examples of

di�erent classes at a distance larger than 1 plus a margin κ.

and for all M ∈ Rd×d :

`(M, z, z′) =

a`1(M, z, z′) if y = +1 and y′ = +1,

(1−a)`1(M, z, z′) if y = −1 and y′ = −1,

b`2(M, z, z′) if y = +1 and y′ = −1,

(1−b)`2(M, z, z′) if y = −1 and y′ = +1,

(2.2)

with the two functions `1 and `2 de�ned as `1(M, z, z′) = [d2
M(x,x′) − 1]+ and `2(M, z, z′) =

[1+κ−d2
M(x,x′)]+ and where κ ≥ 0 is a margin parameter.

We illustrate in Figure 2.2 the behavior of the two sub-losses `1 and `2. The idea of `1 is

to bring examples of the same class at a distance less than 1 while `2 aims to push far away

examples of di�erent classes at a distance larger than 1 plus a margin κ.

Both hyper-parameters a and b take values in [0, 1]. The parameter a controls the trade-

o� between bringing closer the minority examples and bringing closer the majority examples.

While the second parameter b controls the trade-o� between keeping far away the majority

examples from the neighborhood of minority ones, and keeping far away minority examples

from the neighborhood of majority ones.

In addition to inserting Equation (2.2) into Equation (2.1), we need to set the regularization

term Reg(M). In order to avoid over-�tting, we propose to enforce M to be close to the identity

matrix I such as Reg(M) = ‖M− I‖2F , with ‖ · ‖F the Frobenius norm. In other words, we aim

at learning a Mahalanobis metric which is close to the Euclidean distance while satisfying the

best the semantic constraints.

36

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

All things considered, our IML algorithm takes the form of the following convex problem:

min
M�0

F (M) =
1

m2

(∑

(z,z′)∈Sim+

a`1(M, z, z′) +
∑

(z,z′)∈Sim−
(1−a)`1(M, z, z′) +

∑

(z,z′)∈Dis+
b`2(M, z, z′) +

∑

(z,z′)∈Dis−
(1−b)`2(M, z, z′)

)
+ λ‖M− I‖2F ,

(2.3)

where the four sets Sim+, Dis+, Dis− and Sim− are de�ned as subsets of S×S respectively as:

Sim+ ⊆ S+ × S+, Dis+ ⊆ S+ × S−, Dis− ⊆ S− × S+ and Sim− ⊆ S− × S−.
If we look more closely at the proposed Equation (2.3), when all pairs from S × S are

involved, Sim+ and Sim− contain respectively m+m+ and m−m− pairs while Dis+ and Dis−

are composed respectively of m+m− and m−m+ pairs. This means that the pairs in Dis+

and Dis− are symmetric and these two sets might be merged. However, metric learning rarely

considers all the possible pairs as it becomes quite ine�cient in the presence of a large number

of examples. Possible strategies to select the pairs include a random selection [Davis et al.,

2007, Xiang et al., 2008, Xing et al., 2003, Zadeh et al., 2016] or a selection based on the

nearest neighbors rule [Lu et al., 2013, Weinberger and Saul, 2009]. For this reason, it might

make sense to separate the two sets Dis+ and Dis− and allows to weight them di�erently as (i)

they may not consider the same subsets of pairs, and (ii) may not capture the same geometric

information. Another interpretation of such a decomposition in an imbalanced learning setting

is the following: if z′ is selected as belonging to the neighborhood of z, the minimization of the

four terms of Equation (2.3) can be seen as a nice way to implicitly optimize with a kNN rule

the true positive, false negative, false positive and true negative rates respectively.

Among the two strategies to select the pairs, the selection based on the nearest neighbors is

more adapted to an imbalanced scenario as it considers k pairs for each training example from

both the majority and minority classes. On the other hand, the random strategy just picks at

random two examples to create a pair. Then with imbalanced data, it might be possible not to

have any similar pair between two minority examples, thus focusing on the majority class. We

will see experimentally in Section 2.5 that, as expected, the selection of the pairs based on the

nearest neighbors rule performs better.

The fundamental di�erence between our formulation and classic metric learning formulations

is that we separate in our loss the set of similar pairs S into two sets Sim+ and Sim−, and the

set of dissimilar pairs D into Dis+ and Dis−. In a classic metric learning formulation, these

four sets are all treated equally by giving them a weight of 1
m2 . However in the presence of

imbalanced data, the number of pairs in Sim+ and Dis+ which is in O(m+) is much smaller than

in the sets Sim− and Dis− where the number of pairs is in O(m−). Intuitively, in the presence

of imbalanced data, the terms in O(m+) will have a smaller impact on the loss function, thus,

we aim at re-weighting these four sets to account the imbalance. We adopt a simple strategy

consisting in giving a weight to each set that depends on its number of elements. We choose

37

2.3. IML: Imbalanced Metric Learning

to give to the two sets Sim+ and Dis+ a weight a = b = m−

m and to the two sets Sim− and

Dis− a weight m+

m . This strategy allows us to give the same importance to the four terms

in the loss function, no matter how imbalanced the data is. We will see experimentally that

using this re-weighting instead of the weight 1
m2 greatly increases the performances when facing

increasingly imbalanced data.

50% of positives 30% of positives 10% of positives 5% of positives 1% of positives

Positive examples Negative examples

0%
10%
20%
30%
40%
50% 50.80%

16.53%

1.08% 0.38% 0.00%

50.00%

29.97%

9.91%
4.94% 0.99%

Among similar constraints, percentage of constraints between positive examples

Random constraints Nearest neighbor constraints

0%
20%
40%
60%
80%

100% 92.47% 84.74%
64.85%

55.13%

26.67%

92.47% 86.29% 78.79% 78.21%
66.67%

Percentage of satisfied nearest neighbor constraints between positive examples

Uniform constraints weighting Proposed constraints weighting

Figure 2.3: Description of the two strategies of our IML algorithm to deal with the imbalance

compared to classical metric learning methods. The top row of plots shows a toy dataset having

an increasing class imbalance. The �rst strategy in the second row of plots consists in selecting

constraints for each example rather than a global random selection to avoid having no similar

constraints between minority examples in highly imbalanced scenarios. The second strategy (the

third row of plots) consists in weighting the importance of the pairs depending on their labels to

prevent the less represented constraints from being ignored during the optimization process and,

as a result, not satis�ed in the newly learned representation space.

We illustrate in Figure 2.3 the two main strategies used by our proposed method to deal

with the class imbalance. It depicts a toy dataset where two classes of points are represented

initially in equal proportions, and where the percentage of examples of one of the two classes is

gradually decreased from 50% to 1%. In the second row of plots, when increasing the imbalance,

a random selection of the pairs of examples tends to select 0% of the pairs between minority

examples when the data is extremely imbalanced with only 1% of minority examples. However,

our �rst strategy to select the pairs of examples based on the k nearest neighbor rule allows to

obtain by construction the same percentage of pairs as the percentage of minority examples,

38

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

because k pairs are selected for every example.

We also notice in the third row of plots that the uniform weight given to the loss of every

constraint by classical metric learning algorithms as done in Equation (2.1) is not adapted for

imbalanced data. Indeed, the metric learning algorithm tends more and more to ignore the

less represented constraints because they tend to not be satis�ed in the new representation

space (only 26.67% of constraints satis�ed from 1% of positives). Our proposed weighting

scheme allows to much better ful�ll the similarity constraints between minority examples by

re-balancing the importance given to the two classes in the objective function.

2.4 Generalization bound for IML

In this section, we provide a theoretical analysis of our algorithm using the uniform stability

framework [Bousquet and Elissee�, 2002] recalled in Section 1.1.5. This framework can be

adapted to any metric learning algorithm [Bellet et al., 2015, Jin et al., 2009] taking the following

form:

min
M�0

G(M) =
∑

(z,z′)∈S2

`(M, z, z′)

︸ ︷︷ ︸
R̂(M)

+λReg(M) , (2.4)

where R̂(M) is the empirical loss of M on S, and ` is any loss function that is q-Lipschitz and

(σ, p)-admissible as de�ned in the following.

De�nition 2 (q-Lipschitz function). A function f is q-Lipschitz w.r.t. its �rst argument if for

any u, v,

|f(u)− f(v)| ≤ q|u− v|.

De�nition 3 ((σ, p)-admissible function). A loss ` is (σ, p)-admissible w.r.t. its �rst argument

M if it is convex in M and if ∀z1, z2, z3, z4,

|`(M, z1, z2)−`(M, z3, z4)|≤σ|y12−y34|+p

with yij= + 1 if yi=yj and yij=− 1 otherwise.

To prove a uniform stability-based generalization bound, the algorithm has to be stable�

meaning that its output does not change signi�cantly under a small modi�cation of S� ac-

cording to the following de�nition.

De�nition 4 ([Jin et al., 2009] Eq. (5)). A metric learning algorithm has uniform stability in

β ≥ 0 w.r.t. the loss function ` if ∀i ∈ {1, . . . ,m} the following holds

∀S ∈ Zm, sup
z,z′

∣∣`(M, z, z′)− `(Mi, z, z′)
∣∣ ≤ β ,

where M is learned from S, and Mi is learned from Si, the set obtained by replacing the ith

example in S by another also i.i.d. from D.

39

2.4. Generalization bound for IML

If an algorithm has uniform stability, then it is possible to derive an upper bound on its

generalization error using the McDiarmid inequality [Bousquet and Elissee�, 2002] recalled

below.

Theorem 2 (McDiarmid Inequality, [Bousquet and Elissee�, 2002] Th. 2). Let G : Zm → R
be any function for which there exists constants ci, ∀i ∈ {1, . . . ,m} such that

sup
S∈Zm,zi∈Z

|G(S)−G(Si)| ≤ ci,

then

∀ε>0, PS

[∣∣∣G(S)− ES
[
G(S)

]∣∣∣ ≥ ε
]
≤ 2 exp

(−2ε2∑m
i=1 c

2
i

)

where PS denotes the probability with respect to the random draw of the dataset S from Dm.

Then, one can derive the following theorem.

Theorem 3 ([Bellet et al., 2015] Th. 8.11). Let S be a dataset of m randomly selected training

examples and M be the PSD matrix learned from an algorithm with stability β. Assuming that

the loss ` is q-Lipschitz and (σ, p)-admissible, with probability at least 1 − δ over the random

choice of S ∼ Dm, we have the following bound on the true risk R(M)

R(M) ≤ R̂(M) + 2β +
(

2mβ + 2(2σ + p)
)√ ln 2/δ

2m
.

This kind of generalization bound has two advantages: (i) unlike Vapnik-Chervonenkis

dimension-based bounds [Vapnik and Chervonenkis, 1971], it takes into consideration properties

of the algorithm, and (ii) it o�ers tools to deal with the fact that the pairs of examples are

usually not drawn i.i.d. from D ×D [Bellet et al., 2015]. In the rest of this section, we �rst show

that our loss is q-Lipschitz; then, we prove that our algorithm is stable, and �nally, we derive

a generalization bound on its true risk using the McDiarmid inequality. In the following, we

assume that the norm of any example is upper-bounded by a constant, i.e., ∀x ∈ Rd, ‖x‖ ≤ B.

Lemma 1. Let M, M′ be any matrices and (z, z′) any pair of labeled examples, then the loss

`, as de�ned in Equation (2.2), is q-Lipschitz w.r.t. its �rst argument, i.e., we have

∣∣∣`(M, z, z′)− `(M′, z, z′)
∣∣∣ ≤ q‖M−M′‖F ,

with q = 4B2.

Proof. Let z = (x, y), z′ = (x′, y′) be two examples and M, M′ be two matrices. If y = +1

and y′ = +1 we have

∣∣∣`(M, z, z′)− `(M′, z, z′)
∣∣∣

=
∣∣∣a`1(M, z, z′)− a`1(M′, z, z′)

∣∣∣

40

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

=
∣∣∣a[d2

M(x,x′)− 1]+ − a[d2
M′(x,x

′)− 1]+

∣∣∣

= a
∣∣∣[d2

M(x,x′)− 1]+ − [d2
M′(x,x

′)− 1]+

∣∣∣ (2.5)

≤
∣∣∣[d2

M(x,x′)− 1]+ − [d2
M′(x,x

′)− 1]+

∣∣∣ (2.6)

≤
∣∣∣d2

M(x,x′)− 1− d2
M′(x,x

′) + 1
∣∣∣ (2.7)

=
∣∣∣d2

M(x,x′)− d2
M′(x,x

′)
∣∣∣

=
〈
x− x′, (M−M′)(x− x′)

〉

≤ ‖x− x′‖‖(M−M′)(x− x′)‖ (2.8)

≤ ‖x− x′‖‖x− x′‖‖M−M′‖F (2.9)

≤
(
‖x‖+ ‖ − x′‖

)(
‖x‖+ ‖ − x′‖

)
‖M−M′‖F (2.10)

≤ 4B2‖M−M′‖F . (2.11)

Lines (2.5) and (2.6) come from the fact that a ∈ [0, 1], line (2.7) is obtained by using the fact

that ∀u ∈ R,∀v ∈ R we have |max(0, u) − max(0, v)| ≤ |u − v|, Line (2.8) from the Cauchy-

Schwarz inequality, Lines (2.9) and (2.10) from norm properties and Line (2.11) from the fact

that we assumed that ∀x ∈ Rd, ‖x‖ ≤ B. Similarly when y = +1 and y′ = −1, or y = −1 and

y′ = +1 or y = −1 and y′ = −1, we obtain a bound of 4B2‖M −M′‖F . Thus for any pair of

labeled examples (z, z′), we have
∣∣∣`(M, z, z′)− `(M′, z, z′)

∣∣∣ ≤ q‖M−M′‖F with q = 4B2.

Let M be the matrix learned from S and Sim+, Dis+, Dis− and Sim− be the subsets of pairs

coming from S × S as described in Section 2.3. The true and empirical losses are respectively

de�ned as:

R(M) = E
z∼D,z′∼D

`(M, z, z′)

and R̂(M) =
1

m2

(∑

(z,z′)∈Sim+

a`1(M, z, z′) +
∑

(z,z′)∈Sim−
(1−a)`1(M, z, z′) +

∑

(z,z′)∈Dis+
b`2(M, z, z′) +

∑

(z,z′)∈Dis−
(1−b)`2(M, z, z′)

)
.

where E
z∼D,z′∼D

denotes the expectation with respect to the random draw of z and z′ according

to D. Thus Equation (2.3) can be reformulated as:

min
M�0

F (M) = R̂(M) + λ‖M− I‖2F .

Uniform Stability of IML.We now proceed to show that our algorithm satis�es De�nition 4.

For that purpose, we introduce a lemma similar to Lemma 20 from Bousquet and Elissee� [2002]

and Lemma 8.6 from Bellet et al. [2015].

Lemma 2. Let matrices M∗ and M∗i be the minimizers of F on S and Si respectively. Let

∆M∗ = M∗i −M∗ and ρ = m+

m the proportion of minority examples. Then for any t ∈ [0, 1]

41

2.4. Generalization bound for IML

we have

‖M∗−I‖2F − ‖M∗+t∆M∗−I‖2F + ‖M∗i−I‖2F − ‖M∗i−t∆M∗−I‖2F

≤
(
a(2ρ− 1) + 2(1− ρ)

λm

)
2qt‖M∗i −M∗‖F .

Proof. Firstly, a convex function f satis�es for all u, v and for all t ∈ [0, 1],

f(u+ t(v − u))− f(u) ≤ tf(v)− tf(u).

Let R̂i(M∗) be the empirical risk over Si. Since R̂i(M∗) is convex, we have

R̂i(M∗ + t∆M∗)− R̂i(M∗) ≤ tR̂i(M∗i)− tR̂i(M∗). (2.12)

By switching M∗ and M∗i we have

R̂i(M∗i − t∆M∗)− R̂i(M∗i) ≤ tR̂i(M∗)− tR̂i(M∗i). (2.13)

Summing Equation (2.12) and Equation (2.13) gives

R̂i(M∗ + t∆M∗)− R̂i(M∗) + R̂i(M∗i − t∆M∗)− R̂i(M∗i) ≤ 0. (2.14)

We denote FS and FSi the function F to minimize respectively on S and on Si. Since M∗ and

M∗i are the minimizers of FS and FSi , we have

FS(M∗)− FS(M∗ + t∆M∗) ≤ 0, (2.15)

and FSi(M∗i)− FSi(M∗i − t∆M∗) ≤ 0 . (2.16)

Summing Equations (2.15) and Equation (2.16) gives

FS(M∗)− FS(M∗ + t∆M∗) + FSi(M∗i)− FSi(M∗i − t∆M∗) ≤ 0 . (2.17)

Replacing F in Equation (2.17) by its de�nition gives

R̂(M∗)− R̂(M∗+t∆M∗) + R̂i(M∗i)− R̂i(M∗i−t∆M∗) + λ
(
‖M∗−I‖2F

− ‖M∗+t∆M∗−I‖2F + ‖M∗i−I‖2F − ‖M∗i−t∆M∗−I‖2F
)
≤ 0. (2.18)

Adding Equation (2.14) to Equation (2.18) gives

λ
(
‖M∗−I‖2F − ‖M∗+t∆M∗−I‖2F + ‖M∗i−I‖2F − ‖M∗i−t∆M∗−I‖2F

)

≤ −R̂(M∗) + R̂(M∗ + t∆M∗)− R̂i(M∗ + t∆M∗) + R̂i(M∗). (2.19)

The left-hand side of Equation (2.19) corresponds to the left-hand side of the lemma multiplied

by λ. As described in Section 2.3, we consider subsets of S×S which are Sim+, Dis+, Dis− and

Sim−. We do the same for Si × Si to obtain Simi+, Disi+, Disi− and Simi−. Let U,U i, V, V i,

W,W i and X,Xi be the sets of di�erent pairs respectively between Sim+ and Simi+, between

Dis+ and Disi+, between Dis− and Disi− and between Sim− and Simi−. Since the other pairs

cancel each other, by bounding the right hand side we have

R̂(M∗ + t∆M∗)− R̂(M∗)− R̂i(M∗ + t∆M∗) + R̂i(M∗)

42

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

≤
∣∣∣R̂(M∗ + t∆M∗)− R̂(M∗)− R̂i(M∗ + t∆M∗)+R̂i(M∗)

∣∣∣

=

∣∣∣∣∣
a

m2

∑

(z,z′)∈Sim+

(
`1(M∗+t∆M∗, z, z′)−`1(M∗, z, z′)

)
+

b

m2

∑

(z,z′)∈Dis+

(
`2(M∗+t∆M∗, z, z′)−`2(M∗, z, z′)

)
+

1− b
m2

∑

(z,z′)∈Dis−

(
`2(M∗+t∆M∗, z, z′)−`2(M∗, z, z′)

)
+

1− a
m2

∑

(z,z′)∈Sim−

(
`1(M∗+t∆M∗, z, z′)−`1(M∗, z, z′)

)
+

a

m2

∑

(z,z′)∈Simi+

(
−`1(M∗+t∆M∗, z, z′)+`1(M∗, z, z′)

)
+

b

m2

∑

(z,z′)∈Disi+

(
−`2(M∗+t∆M∗, z, z′)+`2(M∗, z, z′)

)
+

1− b
m2

∑

(z,z′)∈Disi−

(
−`2(M∗+t∆M∗, z, z′)+`2(M∗, z, z′)

)
+

1− a
m2

∑

(z,z′)∈Simi−

(
−`1(M∗+t∆M∗, z, z′)+`1(M∗, z, z′)

)
∣∣∣∣∣

≤ a

m2

∑

(z,z′)∈U

∣∣∣∣∣`1(M∗ + t∆M∗, z, z′)− `1(M∗, z, z′)

∣∣∣∣∣+

b

m2

∑

(z,z′)∈V

∣∣∣∣∣`2(M∗ + t∆M∗, z, z′)− `2(M∗, z, z′)

∣∣∣∣∣+

1− b
m2

∑

(z,z′)∈W

∣∣∣∣∣`2(M∗ + t∆M∗, z, z′)− `2(M∗, z, z′)

∣∣∣∣∣+

1− a
m2

∑

(z,z′)∈X

∣∣∣∣∣`1(M∗ + t∆M∗, z, z′)− `1(M∗, z, z′)

∣∣∣∣∣+

a

m2

∑

(z,z′)∈U i

∣∣∣∣∣`1(M∗ + t∆M∗, z, z′)− `1(M∗, z, z′)

∣∣∣∣∣+

b

m2

∑

(z,z′)∈V i

∣∣∣∣∣`2(M∗ + t∆M∗, z, z′)− `2(M∗, z, z′)

∣∣∣∣∣+

1− b
m2

∑

(z,z′)∈W i

∣∣∣∣∣`2(M∗ + t∆M∗, z, z′)− `2(M∗, z, z′)

∣∣∣∣∣+

1− a
m2

∑

(z,z′)∈Xi

∣∣∣∣∣`1(M∗ + t∆M∗, z, z′)− `1(M∗, z, z′)

∣∣∣∣∣ .

Depending on the label of the example replaced and the label of the substitute instance, the

sets U , U i, V , V i, W , W i, X and Xi will contain a di�erent number of pairs. This number is

at most 2m+ for |U |+ |U i| (by taking in Sim+ all the m+m+ possible pairs), at most 2m− for

43

2.4. Generalization bound for IML

|V |+|V i| and |W |+|W i| (by taking in Dis+ and Dis− all them+m− possible pairs) and at most

2m− for |X| + |Xi| (by taking in Sim− all the m−m− possible pairs). Using the q-Lipschitz

property from Lemma 1 we obtain

|R̂(M∗ + t∆M∗)− R̂(M∗)− R̂i(M∗ + t∆M∗) + R̂i(M∗)|

≤
(
am+ + (b+ 1− b+ 1− a)m−

m2

)
2qt‖M∗i −M∗‖F

=

(
ρa+ (2− a)(1− ρ)

m

)
2qt‖M∗i −M∗‖F

=

(
a(2ρ− 1) + 2(1− ρ)

m

)
2qt‖M∗i −M∗‖F .

Combining with Equation (2.19) gives

‖M∗−I‖2F − ‖M∗+t∆M∗−I‖2F + ‖M∗i−I‖2F − ‖M∗i−t∆M∗−I‖2F

≤
(
a(2ρ− 1) + 2(1− ρ)

λm

)
2qt‖M∗i −M∗‖F .

The parameter b of Equation (2.3) does not appear in this Lemma. While in the experiments,

in order to scale to large datasets, the pairs will be generated by using the k-neighborhood of

the examples, we derived the proof in Lemma 2 by using all the pairs, that allowed us to get

rid of the parameter b. This enables us to provide a more general result that does not depend

on additional parameters (here the k of the k-nearest-neighbor rule).

Along with the q-Lipschitz property of Lemma 1, Lemma 2 allows us to prove that IML is

stable.

Lemma 3. IML has uniform stability with

β =
2q2
(
a(2ρ− 1) + 2(1− ρ)

)

λm
.

Proof. By setting t = 1
2 in Lemma 2 we have

‖M∗−I‖2F−‖1
2(M∗i+M∗)−I‖2F+‖M∗i−I‖2F−

∥∥1
2(M∗i+M∗)−I

∥∥2

F

= ‖M∗ − I‖2F + ‖M∗i − I‖2F − 2
∥∥1

2(M∗i + M∗)− I
∥∥2

F

= ‖M∗ − I‖2F + ‖M∗i − I‖2F − 2
∥∥1

2(M∗i + M∗ − 2I)
∥∥2

F

= ‖M∗ − I‖2F + ‖M∗i − I‖2F − 21
4

∥∥M∗i + M∗ − 2I
∥∥2

F

= ‖M∗ − I‖2F + ‖M∗i − I‖2F − 1
2

∥∥M∗ − I + M∗i − I
∥∥2

F

= 〈M∗ − I,M∗ − I〉+
〈
M∗i − I,M∗i − I

〉
−

1
2

〈
M∗ − I + M∗i − I,M∗ − I + M∗i − I

〉
(2.20)

= 1
2

(
〈M∗,M∗〉+

〈
M∗i,M∗i

〉
−
〈
M∗,M∗i

〉
−
〈
M∗i,M∗

〉)
(2.21)

= 1
2

(
〈−M∗,−M∗〉+

〈
M∗i,M∗i

〉
+
〈
−M∗,M∗i

〉
+
〈
M∗i,−M∗

〉)

44

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

= 1
2

〈
M∗i −M∗,M∗i −M∗

〉

= 1
2‖M∗i −M∗‖2F ,

where from Equation (2.20) to Equation (2.21) we develop using 〈A+B,C +D〉 = 〈A,C〉 +

〈A,D〉+ 〈B,C〉+ 〈B,D〉, with 〈·, ·〉 is the Frobenius inner product.
To resume, from Lemma 2 with t = 1

2 we have

‖M∗i −M∗‖F ≤
(
a(2ρ− 1) + 2(1− ρ)

λm

)
2q .

Using the q-Lipschitz property of ` we obtain that

|`(M∗, z, z′)− `(M∗i, z, z′)|

≤ q

(
a(2ρ− 1) + 2(1− ρ)

λm

)
2q

=
2q2
(
a(2ρ− 1) + 2(1− ρ)

)

λm

= β .

Derivation of the main result. To prove our bound, we follow the derivation of The-

orem 8.11 from Bellet et al. [2015]. We �rst provide two lemmas, and then we use them in

conjunction with the McDiarmid inequality to derive a generalization bound.

First, we introduce a lemma that bounds the di�erence on the empirical risk over S and Si.

Lemma 4. Let M∗ be the optimal solution of Equation (2.3). We have

∣∣∣R̂(M∗)− R̂i(M∗)
∣∣∣

≤
2
(
a(2ρ− 1) + 1− ρ

)
4B2‖M∗‖F + 2(1− ρ)(1+κ)

m
.

where R̂ and R̂i denote respectively the empirical risk over S and Si.

Proof. Let M be the optimal solution of Equation (2.3) and S a training set. In a similar way

as in the proof of Lemma 2, let U,U i, V, V i, W,W i and X,Xi be the sets of di�erent pairs

respectively between Sim+ and Simi+, between Dis+ and Disi+, between Dis− and Disi− and

between Sim− and Simi−. Then

∣∣∣R̂(M∗)− R̂i(M∗)
∣∣∣

=

∣∣∣∣∣
a

m2

 ∑

(z,z′)∈U
`1(M∗, z, z′)−

∑

(z,z′)∈U i

`1(M∗, z, z′)

+

b

m2

 ∑

(z,z′)∈V
`2(M∗, z, z′)−

∑

(z,z′)∈V i

`2(M∗, z, z′)

+

45

2.4. Generalization bound for IML

1− b
m2

 ∑

(z,z′)∈W
`2(M∗, z, z′)−

∑

(z,z′)∈W i

`2(M∗, z, z′)

+

1− a
m2

 ∑

(z,z′)∈X
`1(M∗, z, z′)−

∑

(z,z′)∈Xi

`1(M∗, z, z′)

∣∣∣∣∣

≤ a

m2

∣∣∣∣∣∣
∑

(z,z′)∈U
4B2‖M∗‖F

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(z,z′)∈U i

4B2‖M∗‖F

∣∣∣∣∣∣

+

b

m2

∣∣∣∣∣∣
∑

(z,z′)∈V
(1 + κ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(z,z′)∈V i

(1 + κ)

∣∣∣∣∣∣

+

1− b
m2

∣∣∣∣∣∣
∑

(z,z′)∈W
(1 + κ)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(z,z′)∈W i

(1 + κ)

∣∣∣∣∣∣

+

1− a
m2

∣∣∣∣∣∣
∑

(z,z′)∈X
4B2‖M∗‖F

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(z,z′)∈Xi

4B2‖M∗‖F

∣∣∣∣∣∣

 (2.22)

where Equation (2.22) comes from the fact that supz1,z2 `1(M∗, z1, z2) ≤ 4B2‖M∗‖F (obtained

similarly as in the Proof of the q-Lipschitz property) and that supz1,z2 `2(M∗, z1, z2) ≤ 1 + κ

(because the Mahalanobis distance is always positive).

As 4B2‖M∗‖F and (1 + κ) are always positive, we have
∣∣∣R̂(M∗)− R̂i(M∗)

∣∣∣

≤

(
a
(
|U |+|U i|

)
+ (1− a)

(
|X|+|Xi|

))
4B2‖M∗‖F

m2
+

(
b
(
|V |+|V i|

)
+ (1− b)

(
|W |+|W i|

))
(1+κ)

m2
.

As in the proof of Lemma 2, the number of pairs in the subsets is at most m+ for U and

U i, and at most m− for V , V i, W , W i, X and Xi. Thus for any labeled example replaced by

any labeled example, we have
∣∣∣R̂(M∗)− R̂i(M∗)

∣∣∣

≤ 2(am+ + (1− a)m−)4B2‖M∗‖F + 2m−(b+ 1− b)(1+κ)

m2

=
2
(
a(2ρ− 1) + 1− ρ

)
4B2‖M∗‖F + 2(1− ρ)(1+κ)

m
.

We recall a useful Lemma coming from Bellet et al. [2015] and Bousquet and Elissee� [2002]:

Lemma 5 ([Bellet et al., 2015] Lemma 8.9, [Bousquet and Elissee�, 2002] in Proof of Theorem

12). For any learning method of estimation error R(M)−R̂(M) and satisfying uniform stability

in β we have

ES [R(M)− R̂(M)] ≤ 2β.

46

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

Using Lemma 4 and the stability of Lemma 3, we introduce a lemma similar to Lemma 8.10

by Bellet et al. [2015].

Lemma 6. Let matrices M∗ and M∗i be the minimizers of F on S and Si respectively. As

IML has stability β, we have
∣∣∣∣∣R(M∗)− R̂(M∗)−

(
R(M∗i)− R̂i(M∗i)

)∣∣∣∣∣ ≤
2mβ +D

m
= ci,

with

D = 2
(
a(2ρ− 1) + 1− ρ

)
4B2‖M∗‖F + 2(1− ρ)(1+κ).

Proof.
∣∣∣∣∣R(M∗)− R̂(M∗)−

(
R(M∗i)− R̂i(M∗i)

)∣∣∣∣∣

=

∣∣∣∣∣R(M∗)− R̂(M∗)−R(M∗i) + R̂i(M∗i) + R̂(M∗i)− R̂(M∗i)

∣∣∣∣∣

=

∣∣∣∣∣R(M∗)−R(M∗i) + R̂(M∗i)− R̂(M∗) + R̂i(M∗i)− R̂(M∗i)

∣∣∣∣∣

≤
∣∣∣∣∣R(M∗)−R(M∗i)

∣∣∣∣∣+

∣∣∣∣∣R̂(M∗i)− R̂(M∗)

∣∣∣∣∣+

∣∣∣∣∣R̂
i(M∗i)− R̂(M∗i)

∣∣∣∣∣

≤ β + β +
D

m

=
2mβ +D

m

with

D = 2
(
a(2ρ− 1) + 1− ρ

)
4B2‖M∗‖F + 2(1− ρ)(1+κ).

We are now able to state our main result.

Theorem 4 (Generalization bound for IML). Let S be a dataset of m = m+ +m− randomly

selected training examples with ρ = m+

m the proportion of minority examples and let M∗ be the

optimal solution learned from Equation (2.3) having stability β. With probability at least 1− δ
over the random choice of S ∼ Dm, we have

R(M∗) ≤ R̂(M∗) + 2β + (2mβ +D)

√
ln 2/δ

2m

with β =
2q2
(
a(2ρ− 1) + 2(1− ρ)

)

λm

and D = 2
(
a(2ρ− 1) + 1− ρ

)
4B2‖M∗‖F + 2(1− ρ)(1+κ) .

Proof. From Lemma 6, we know that the variable G(S) = R(M∗)− R̂(M∗) satis�es the condi-

tion of the McDiarmid inequality with the same ci = 2mβ+D
m ∀i ∈ {1, . . . ,m}. By applying the

inequality we have

PS
[∣∣G(S)− ES [G(S)]

∣∣ ≥ ε
]
≤ 2 exp

(−2ε2∑m
i=1 c

2
i

)
.

47

2.4. Generalization bound for IML

By setting δ to the right hand side of the previous inequality we obtain

δ = 2 exp

(−2ε2

mc2
i

)

⇐⇒ ln δ/2 =
−2ε2m2

m(2mβ +D)2

⇐⇒ ln 2/δ

2m
=

ε2

(2mβ +D)2

⇐⇒ ε = (2mβ +D)

√
ln 2/δ

2m
.

Thus with probability at least 1− δ we have

|G(S)−ES [G(S)]| ≤ ε

⇐⇒ |G(S)−ES [G(S)]| ≤ (2mβ +D)

√
ln 2/δ

2m

⇐⇒ G(S) ≤ ES [G(S)] + (2mβ +D)

√
ln 2/δ

2m

⇐⇒ R(M∗) ≤ R̂(M∗)+2β+(2mβ +D)

√
ln 2/δ

2m
. (2.23)

where Equation (2.23) comes from Lemma 5.

Discussion. The di�erence between our Theorem 4 and classic bounds of the form of

Theorem 3 is that proportion of minority examples ρ = m+

m and the weight of the similar

minority pairs a appear in the two terms β and D. Classic metric learning bounds are derived

in a balanced setting where ρ = 0.5 (i.e., positives and negatives are balanced) and where the

parameters a and b are equal to 0.5. It is worth noting that plugging these values in our bound

allows us to retrieve the constant β = 2q2

λm as derived in Theorem 8.7 by Bellet et al. [2015]. This

means that our β formulation is a generalization of the standard stability constants in metric

learning. Regarding the term D, the decomposition into four terms allows us to get a tighter

bound by a factor 4 with D = 4B2‖M‖F + (1 + κ) while D = 16B2‖M‖F + 4(1 + κ) by Bellet

et al. [2015].

Another interesting interpretation of our bound is that when ρ tends to 0, i.e., the dataset

is more and more imbalanced, a classic metric learning method (with a = b = 0.5) will converge

slower. Indeed, in such a situation, we get a stability constant β which would tend to 3q2

λm > 2q2

λm

while by parameterizing by a, we have 2q2(−a+2)
λm . In this case, a value of a close to 1 allows us

to reduce the negative e�ect of the imbalance.

48

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

Table 2.1: Description of the datasets (m: number of examples, d: number of features, c: num-

ber of classes) and the class chosen as positive (Label), its cardinality (m+) and its percentage

(%).

Name m d c Label m+ % Name m d c Label m+ %

splice 3175 60 2 -1 1527 48.10% glass 214 11 6 1 70 32.71%

sonar 208 60 2 R 97 46.64% newthyroid 215 5 3 2, 3 65 30.23%

balance 625 4 3 L 288 46.08% german 1000 23 2 2 300 30.00%

australian 690 14 2 1 307 44.49% vehicle 846 18 4 van 199 23.52%

heart 270 13 2 2 120 44.44% spectfheart 267 44 2 0 55 20.60%

bupa 345 6 2 1 145 42.03% hayes 160 4 3 3 31 19.38%

spambase 4597 57 2 1 1812 39.42% segmentation 2310 19 7 window 330 14.29%

wdbc 569 30 2 M 212 37.26% abalone 4177 10 28 8 568 13.60%

iono 351 34 2 b 126 35.90% yeast 1484 8 10 ME3 163 10.98%

pima 768 8 2 1 268 34.90% libras 360 90 15 1 24 6.66%

wine 178 13 3 1 59 33.15% pageblocks 5473 10 5 3, 4, 5 231 4.22%

2.5 Experiments

2.5.1 Datasets

We provide here an empirical study of IML on 22 datasets coming mainly from the UCI3 and

Keel4 repositories except for the `splice' dataset which comes from LIBSVM5. All datasets are

normalized such that each feature has a mean of 0 and a variance of 1.

For the sake of simplicity, we have chosen binary datasets, described in Table 2.1 where the

minority class is given by the columns �Label�. IML can easily be generalized to multi-class

problems by learning one metric per class in a standard �one-versus-all� strategy, and then

applying a majority vote [Schölkopf et al., 1995, Vapnik, 1995].

2.5.2 Optimization details

Like most Mahalanobis metric learning algorithms, IML requires the learned matrix M to

be PSD. There exist di�erent methods to enforce the PSD constraint [Kulis, 2013]. A classic

solution consists in performing a Projected Gradient Descent where one alternates a gradient

descent step and a (costly) projection onto the cone of PSD matrices. The advantage is that the

problem remains convex [Xing et al., 2003] w.r.t. M, ensuring that one will attain the optimal

solution of the problem by correctly setting the projection step in the gradient descent. Another

solution [Weinberger and Saul, 2008] is based on the fact that if M is PSD, it can be rewritten

as M = L>L. Therefore, instead of learning M, one can enforce M to be PSD in a cheaper way

by directly learning the projection matrix L ∈ Rr×d (where r is the rank of M). This can be

done thanks to a gradient descent by computing the gradient of the problem w.r.t. L (instead

3https://archive.ics.uci.edu/ml/datasets.html
4http://sci2s.ugr.es/keel/datasets.php
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#splice

49

https://archive.ics.uci.edu/ml/datasets.html
http://sci2s.ugr.es/keel/datasets.php
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#splice

2.5. Experiments

of M). The implementation6 we propose is based on this latter approach [Weinberger and Saul,

2008] where we make use of the L-BFGS-B algorithm [Zhu et al., 1997] from the SciPy Python

library to optimize our problem: it takes as input our initial point (the identity matrix), the

optimization problem of Equation (2.3), and its gradient, then it performs a gradient descent

that returns the projection matrix L minimizing Equation (2.3). To prevent us from tuning r

and �nding the best r-dimensional projection space, we set r = d in the experiments. Indeed,

our main objective here is to learn a robust metric and not to perform dimensionality reduction.

As discussed at the end of Section 2.3, the pairs of examples considered by IML in its four

terms are chosen using the nearest neighbors rule. Indeed, we noted experimentally that the

algorithms using this strategy (LMNN [Weinberger and Saul, 2009], IMLS [Wang et al., 2018]

and IML) perform better than the ones using a random selection strategy (ITML [Davis et al.,

2007] and GMML [Zadeh et al., 2016]).

2.5.3 Experimental setup

All along our experiments, we use a 3NN classi�er (like in LMNN [Weinberger and Saul,

2009]) after projection of the training and test data using the metric learned. The metrics

considered in the comparative study are the Euclidean distance and the ones learned by LMNN

[Weinberger and Saul, 2009], ITML [Davis et al., 2007], GMML [Zadeh et al., 2016], IMLS

[Wang et al., 2018] and IML. For each dataset, we generate randomly 20 strati�ed splits of 70%

training examples and 30% test data (same class proportions in training and test) and report

the mean results over the 20 splits. The parameters are tuned to maximize the F1-measure

by doing a 5-fold cross-validation on the training set through a grid search using the following

parameter ranges: for LMNN and IMLS, µ ∈ {0, 0.05, . . . , 1} (k is �xed to 3); for ITML,

γ ∈ {2−10:10}; for GMML t ∈ {0, 0.05, . . . , 1}; and for IML we �x a = b = m−

m and we tune

κ ∈ {1, 10, 100, 1000, 10000} and λ ∈ {0, 0.01, 0.1, 1, 10} (k is also set to 3).

2.5.4 Analysis of the results

First experiment�without data pre-processing We start by applying the experimental

setup described above and we report the results in Table 2.2. On average, the F1-measure of

72.3% obtained by IML is the best in comparison to 70.8% for LMNN and IMLS, 70.1%

for ITML, 69.3% for GMML and 67.3% for the Euclidean distance. Overall, IML shows

also the best average rank of 1.52. IML generally gives better performances on the datasets

considered no matter how much they are balanced or not. This means that our re-weighting

scheme of the pairs can not only improve the performances in an imbalanced setting but can

be also competitive in more classic scenarios.

Second experiment�with data pre-processing As previously said, to address imbal-

anced data issues, classic machine learning algorithms typically resort to over/under-sampling

6The code is available here: https://leogautheron.github.io

50

https://leogautheron.github.io

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

Table 2.2: Average F1-measure ± standard deviation over 20 splits using di�erent metric

learning algorithms.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 44.9 ± 13.2 57.2 ± 12.5 55.4 ± 8.7 52.7 ± 10.8 57.2 ± 12.5 54.9 ± 9.2

wine 94.9 ± 2.2 96.0 ± 2.9 96.3 ± 3.3 95.3 ± 3.1 96.0 ± 2.9 96.6 ± 2.1

sonar 69.2 ± 5.3 70.6 ± 6.5 70.6 ± 5.9 69.1 ± 5.0 71.1 ± 6.7 74.6 ± 3.7

glass 66.0 ± 3.4 63.6 ± 5.2 62.6 ± 5.2 67.2 ± 3.6 63.6 ± 5.2 66.6 ± 4.3

newthyroid 83.4 ± 4.2 88.1 ± 5.2 89.8 ± 5.2 91.1 ± 2.5 88.1 ± 5.2 91.3 ± 2.6

spectfheart 34.8 ± 12.3 39.1 ± 8.4 34.4 ± 7.9 29.1 ± 11.4 38.6 ± 8.7 42.4 ± 8.7

heart 76.8 ± 2.1 74.8 ± 3.2 76.8 ± 2.9 76.9 ± 3.6 74.6 ± 3.1 77.1 ± 3.1

bupa 49.8 ± 4.4 50.1 ± 5.0 51.3 ± 4.8 52.0 ± 5.3 50.1 ± 5.0 52.5 ± 5.1

iono 67.8 ± 6.7 70.8 ± 3.9 73.4 ± 5.4 72.0 ± 5.4 71.0 ± 4.0 76.1 ± 2.9

libras 48.4 ± 15.1 68.3 ± 12.2 65.5 ± 15.3 56.1 ± 16.3 66.6 ± 10.3 67.9 ± 12.1

wdbc 94.2 ± 1.3 93.5 ± 1.7 94.3 ± 1.1 94.4 ± 1.3 93.4 ± 2.2 95.2 ± 1.1

balance 87.4 ± 1.8 89.8 ± 1.3 93.0 ± 1.4 90.3 ± 1.3 89.8 ± 1.3 90.6 ± 1.2

australian 79.9 ± 1.7 81.7 ± 2.0 82.0 ± 1.9 81.0 ± 2.6 81.4 ± 2.0 81.9 ± 1.8

pima 56.2 ± 1.9 55.9 ± 3.3 57.5 ± 3.0 56.7 ± 3.0 55.9 ± 3.3 57.2 ± 2.7

vehicle 80.5 ± 2.4 92.6 ± 1.0 90.2 ± 2.4 90.1 ± 1.7 92.5 ± 1.2 91.8 ± 1.9

german 35.3 ± 2.8 37.3 ± 3.9 37.4 ± 3.3 37.1 ± 3.3 37.8 ± 3.7 38.4 ± 3.5

yeast 73.2 ± 2.3 74.9 ± 2.8 74.2 ± 3.1 73.5 ± 2.6 74.5 ± 2.7 75.4 ± 2.4

segmentation 81.8 ± 2.4 85.3 ± 2.1 79.6 ± 3.0 80.8 ± 3.1 85.6 ± 2.3 86.0 ± 2.5

splice 76.3 ± 0.7 86.5 ± 0.8 79.7 ± 1.4 76.3 ± 1.3 88.0 ± 0.9 87.4 ± 0.6

abalone 22.6 ± 2.1 22.1 ± 2.1 21.2 ± 3.0 21.6 ± 1.7 22.1 ± 2.1 23.0 ± 1.9

spambase 85.3 ± 0.9 88.4 ± 0.8 87.8 ± 1.0 86.8 ± 0.8 88.7 ± 0.5 89.3 ± 0.8

pageblocks 71.9 ± 3.0 71.8 ± 3.2 69.7 ± 5.1 73.7 ± 2.9 71.8 ± 3.1 73.4 ± 2.6

Mean 67.3 ± 4.2 70.8 ± 4.1 70.1 ± 4.3 69.3 ± 4.2 70.8 ± 4.0 72.3 ± 3.5

Average Rank 5.00 3.57 3.57 4.00 3.35 1.52

techniques [Aggarwal, 2013] or create synthetic examples in the neighborhood of the minority

class�e.g., using SMOTE-like strategies [Chawla et al., 2002]. We now aim at studying the

behavior of those methods when used as a pre-process of the metric learning procedures. We

consider the results of Table 2.2 as baselines. We compare them to the performances obtained

after performing prior to metric learning an over-sampling using SMOTE and a Random Under

Sampling (RUS) strategy of the negative data. We use the implementations of these methods

from the Python library imbalanced-learn [Lemaître et al., 2017].

The results obtained are reported in Table 2.3 for SMOTE and Table 2.4 RUS and were

computed using the same training/test splits as in Table 2.2 and the same validation folds.

Thus, they are comparable. In each of the three settings considered, IML obtains the best

results showing that it is more appropriate for improving the F1-measure. SMOTE allows one

to increase signi�cantly the performances of all methods, while there is no gain with RUS in

comparison with an approach without sampling.

This increase of performance suggests that SMOTE and IML are more complementary than

competitors with di�erent objectives. This intuition is supported by the following explanation.

Learning a Mahalanobis distance boils down to optimizing an ellipsoid centered at each point

51

2.5. Experiments

Table 2.3: Same experiment as in Table 2.2 after having applied the SMOTE algorithm [Chawla

et al., 2002] until m+ reaches m−.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 68.0 ± 6.8 64.4 ± 7.6 67.8 ± 7.8 69.5 ± 7.2 64.2 ± 7.6 68.6 ± 7.2

wine 92.7 ± 2.8 95.3 ± 3.0 96.3 ± 2.6 94.4 ± 3.2 95.4 ± 2.9 96.7 ± 2.2

sonar 72.6 ± 4.2 73.0 ± 6.4 72.6 ± 4.5 71.2 ± 4.2 72.7 ± 6.0 75.2 ± 4.8

glass 66.6 ± 2.9 66.1 ± 4.0 64.6 ± 3.2 67.4 ± 3.8 66.1 ± 4.2 66.2 ± 3.5

newthyroid 87.6 ± 3.5 88.7 ± 4.0 91.6 ± 3.2 89.9 ± 4.3 88.7 ± 4.0 90.7 ± 2.2

spectfheart 47.4 ± 2.3 41.9 ± 8.5 46.7 ± 6.9 49.1 ± 4.4 40.9 ± 7.3 46.1 ± 7.8

heart 77.3 ± 2.0 75.0 ± 2.6 75.7 ± 4.1 77.2 ± 3.9 74.4 ± 3.0 76.9 ± 2.3

bupa 54.1 ± 3.1 55.4 ± 3.4 53.9 ± 3.7 55.9 ± 4.1 55.4 ± 3.4 54.8 ± 3.5

iono 78.4 ± 2.6 77.7 ± 3.7 77.5 ± 3.8 78.2 ± 3.9 76.9 ± 3.9 79.9 ± 3.9

libras 68.3 ± 8.1 76.7 ± 8.5 69.7 ± 13.8 69.2 ± 11.0 69.0 ± 14.7 78.1 ± 9.4

wdbc 93.4 ± 1.3 93.5 ± 2.2 94.0 ± 1.4 93.6 ± 1.5 93.0 ± 2.2 94.8 ± 1.3

balance 87.4 ± 1.9 89.6 ± 1.5 92.1 ± 1.4 89.8 ± 1.9 89.5 ± 1.5 90.5 ± 1.4

australian 80.3 ± 1.6 80.7 ± 3.2 82.4 ± 1.5 81.1 ± 1.8 81.1 ± 3.2 82.1 ± 1.6

pima 60.1 ± 2.6 60.1 ± 2.1 60.8 ± 2.2 60.3 ± 2.8 60.1 ± 2.1 61.2 ± 2.0

vehicle 80.6 ± 2.1 92.0 ± 1.6 89.9 ± 3.1 89.5 ± 2.1 92.3 ± 1.5 91.1 ± 1.4

german 46.3 ± 2.2 45.4 ± 3.5 46.4 ± 1.8 46.0 ± 2.3 45.1 ± 3.4 47.1 ± 2.0

yeast 65.9 ± 2.9 67.1 ± 3.7 70.4 ± 2.8 68.4 ± 2.3 68.2 ± 3.7 70.4 ± 3.0

segmentation 82.0 ± 1.9 83.8 ± 2.9 81.6 ± 2.2 81.5 ± 1.8 84.8 ± 3.2 84.8 ± 2.2

splice 74.9 ± 0.9 86.3 ± 0.8 79.6 ± 1.2 76.4 ± 1.3 87.9 ± 1.1 87.2 ± 0.6

abalone 32.3 ± 0.7 31.4 ± 1.7 31.9 ± 0.8 31.7 ± 1.1 31.5 ± 1.2 32.3 ± 1.0

spambase 85.9 ± 0.7 88.5 ± 0.6 87.4 ± 0.9 87.2 ± 0.8 88.8 ± 0.8 89.4 ± 0.8

pageblocks 62.0 ± 2.9 61.5 ± 4.1 55.5 ± 4.0 61.5 ± 3.5 61.0 ± 4.1 62.5 ± 3.5

Mean 71.1 ± 2.7 72.5 ± 3.6 72.2 ± 3.5 72.2 ± 3.3 72.1 ± 3.9 73.9 ± 3.1

Average Rank 4.26 3.91 3.39 3.39 4.17 1.87

which modi�es only locally the decision boundaries. However, these ellipsoids have no impact on

regions of the feature space where there is no positive example. Instead, the SMOTE algorithm

has this capacity to expand the decision boundaries by placing new synthetic examples in areas

not covered by the ellipses.

Third experiment�increasing the imbalance We now aim at showing the e�ciency of

our method by arti�cially increasing and decreasing the imbalance. For a given dataset, we

create a maximum of 10 synthetic variants where the percentage of minority examples is in

{50%, 40%, 30%, 20%, 10%, 5%, 4%, 3%, 2%, 1%}. To create a synthetic variant of a dataset with
a percentage of minority examples higher than in the original dataset, we apply a random under

sampling of the majority class until the desired percentage is reached. Similarly, to create a

synthetic variant with a smaller percentage of minority examples, we apply a random under

sampling of the minority class. We create the synthetic variant of the dataset only if it contains

at least 20 minority examples. For example, for the dataset spectfheart, we cannot go under

10% of minority examples. Due to the small number of minority examples present in the more

imbalanced synthetic variants of the datasets, we split them into 50% training and 50% test

52

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

Table 2.4: Same experiment as in Table 2.2 after having applied a Random Under Sampling of

the negative examples until m− reaches m+.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 63.4 ± 9.0 67.7 ± 7.4 64.7 ± 6.7 66.4 ± 8.1 67.7 ± 7.4 66.0 ± 7.6

wine 91.2 ± 2.6 94.1 ± 2.8 94.2 ± 3.8 92.7 ± 3.7 94.1 ± 2.9 93.9 ± 3.2

sonar 70.4 ± 5.2 73.1 ± 6.3 70.2 ± 5.7 69.9 ± 5.5 71.1 ± 9.2 74.4 ± 4.8

glass 64.6 ± 3.5 63.2 ± 4.5 61.1 ± 4.9 64.6 ± 3.1 62.7 ± 5.0 64.5 ± 4.7

newthyroid 86.6 ± 4.6 91.4 ± 5.0 91.1 ± 4.9 90.6 ± 3.3 91.4 ± 5.0 92.3 ± 2.6

spectfheart 44.2 ± 3.9 42.6 ± 8.0 46.7 ± 4.6 45.9 ± 5.6 42.6 ± 8.0 48.8 ± 6.3

heart 77.4 ± 2.0 75.8 ± 3.3 76.6 ± 2.5 77.3 ± 1.9 75.5 ± 3.3 77.1 ± 2.1

bupa 53.8 ± 4.1 54.1 ± 4.8 54.6 ± 4.1 55.7 ± 3.6 54.1 ± 4.8 55.0 ± 3.2

iono 73.1 ± 5.2 73.3 ± 4.1 75.4 ± 3.4 74.7 ± 3.2 73.3 ± 4.1 77.3 ± 3.0

libras 34.3 ± 10.6 35.6 ± 10.9 38.2 ± 12.2 36.4 ± 12.6 35.6 ± 10.9 39.3 ± 13.8

wdbc 93.7 ± 1.2 92.9 ± 1.6 93.6 ± 1.8 93.2 ± 2.1 92.3 ± 2.5 94.7 ± 1.4

balance 87.5 ± 1.5 90.1 ± 1.3 92.8 ± 1.5 90.1 ± 1.7 90.2 ± 1.3 90.7 ± 1.4

australian 80.4 ± 1.7 81.7 ± 2.2 82.2 ± 1.6 81.5 ± 2.3 81.7 ± 2.2 82.5 ± 2.2

pima 60.8 ± 2.7 60.5 ± 2.1 62.2 ± 1.7 60.8 ± 2.4 60.4 ± 2.1 61.2 ± 2.5

vehicle 74.0 ± 3.1 89.7 ± 1.6 87.7 ± 2.6 85.5 ± 3.1 89.7 ± 2.0 89.3 ± 1.9

german 46.7 ± 1.6 46.9 ± 2.5 47.3 ± 2.3 47.5 ± 1.6 46.2 ± 2.0 48.0 ± 1.8

yeast 57.2 ± 4.5 60.8 ± 4.6 60.9 ± 3.8 59.7 ± 3.8 61.2 ± 4.9 61.9 ± 3.9

segmentation 64.6 ± 3.1 70.4 ± 2.4 65.7 ± 3.4 64.3 ± 2.9 72.4 ± 2.9 74.2 ± 1.8

splice 75.9 ± 0.7 86.5 ± 0.6 79.5 ± 1.6 76.2 ± 1.2 87.9 ± 0.9 87.2 ± 0.6

abalone 32.8 ± 1.1 32.5 ± 1.4 32.5 ± 1.3 31.6 ± 1.0 32.2 ± 1.3 32.6 ± 1.4

spambase 85.0 ± 1.0 88.1 ± 1.1 86.8 ± 1.2 86.2 ± 1.2 88.4 ± 0.7 88.7 ± 0.8

pageblocks 46.8 ± 3.7 50.2 ± 4.8 43.0 ± 5.2 48.3 ± 4.5 49.6 ± 5.6 49.1 ± 4.0

Mean 66.6±3.5 69.1±3.8 68.5±3.7 68.1±3.6 69.1±4.0 70.4±3.4

Average Rank 4.83 3.65 3.30 3.96 3.43 1.83

examples. We report the mean results over 20 iterations where at each iteration we recompute

the synthetic variants of the dataset and the train/test splits.

The results for the spectfheart dataset (already used in the introduction of this chapter)

are reported in Figure 2.4. We see that like the other algorithms, IML shows the same drop of

F1-measure when increasing the imbalance, which shows the di�culty of learning from highly

imbalanced data. However, it is important to notice that the drop of performances of IML is

the smallest among all algorithms.

To con�rm the e�ciency of IML when facing imbalance data on a wide range of datasets,

we present in Figure 2.5 the results of the same experiments by averaging the results over the

22 datasets. We observe the same behavior as for the spectfheart dataset. Again, it is worth

noticing that IML is always more robust while facing imbalanced classes.

Fourth experiment�analyzing why IML is better than the other metric learning

algorithms on imbalanced data When we described IML in Section 2.3, we presented two

strategies to deal with the imbalance. The �rst one, which is already used by some existing

metric learning methods, is a selection of the similar and dissimilar pairs based on the nearest

53

2.5. Experiments

50% 40% 30% 20% 10%
Percentage of positive examples

0
10
20
30
40
50
60
70
80
90

100 Accuracy
Euclidean GMML ITML LMNN IMLS IML

50% 40% 30% 20% 10%
Percentage of positive examples

F1-measure

Figure 2.4: Mean Accuracy and F1-measure over 20 splits on the spectfheart dataset by

arti�cially increasing the imbalance. We compare state-of-the-art metric learning algorithms

with our proposed method IML.

50% 40% 30% 20% 10% 5% 4% 3% 2% 1%
Percentage of positive examples

0
10
20
30
40
50
60
70
80
90

100

F1
-m

ea
su

re

Mean results over the 22 datasets
Euclidean GMML ITML LMNN IMLS IML

Figure 2.5: Mean F1-measure over 20 splits and over the 22 datasets by arti�cially increasing

the imbalance. We compare state-of-the-art metric learning algorithms with our proposed method

IML.

neighbor rule. We proposed in this chapter a second method consisting in weighting di�erently

the set of pairs based on the labels of the two examples composing the pairs. To see the impact

of these two strategies, we compare in this last experiment IML with two variants.

The variant called ML2 considers the loss of IML without the re-weighting of the set of

pairs. Its loss is de�ned as follows:

min
M�0

F (M) =
1

m2

(∑

(z,z′)∈Sim+

`1(M, z, z′) +
∑

(z,z′)∈Sim−
`1(M, z, z′) +

∑

(z,z′)∈Dis+
`2(M, z, z′) +

∑

(z,z′)∈Dis−
`2(M, z, z′)

)
+ λ‖M− I‖2F , (2.24)

where the di�erence with Equation (2.3) is that we no longer multiply each of the four sets

respectively by a, (1− a), b and (1− b).

54

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

The variant called ML1 considers the same loss as ML2, but we select randomly the pairs

of examples. In order to use the same number of pairs in ML1 and IML, we draw randomly

2mk pairs for ML1 since IML considers k similar pairs and k dissimilar pairs per training

example.

50% 40% 30% 20% 10% 5% 4% 3% 2% 1%
Percentage of positive examples

0
10
20
30
40
50
60
70
80
90

100

F1
-m

ea
su

re

Mean results over the 22 datasets
ML1 ML2 IML

Figure 2.6: Mean F1-measure over 20 splits and over the 22 datasets by arti�cially increasing

the imbalance. We compare two variants of IML. The variant ML2 removes one component

that allows IML to deal with the imbalance: the re-weighting of the pairs. ML1 removes in

addition another component to deal with the imbalance: instead of selecting the similar and

dissimilar pairs with the nearest neighbor rule, they are selected randomly by ML1.

The results of this experiment are reported in Figure 2.6. When the classes are balanced

with 50% of minority examples, we observe that IML and its two variants present more or less

the same performances. When increasing the imbalance, as expected, IML tends to be better

than ML2, this latter being better than ML1. This shows that our two strategies to deal with

imbalanced data do not degrade the results on balanced data and that they are complementary

to improve the performances in an imbalanced setting.

Fifth experiment�incorporating our two strategies to deal with the imbalance in

an existing metric learning algorithm We saw in the previous experiment that our two

strategies to deal with the imbalance improve the performances of our metric learning algorithm

when the datasets are highly imbalanced without a�ecting the results when the data is balanced.

We propose here to investigate if this improvement can also be observed by incorporating our

strategies to an existing metric learning algorithm. We do not consider LMNN and IMLS

because they make use of triplet constraints while our re-weighting is designed for pairwise

constraints. We also do not consider ITML because our re-weighting sometimes causes the

metric learned to be no longer PSD. Thus, we only consider GMML for this experiment as it

is the most suited metric learning algorithm to adapt with our two strategies.

Our two modi�cations of GMML are the following: (i) instead of selecting randomly the

pairs, we select them using the 3 nearest neighbors; (ii) instead of having the same weight for

55

2.6. Conclusion and perspectives

every pair, we assign to the pairs where the �rst example is a positive example a weight equal

to the number of negative examples m−, and to the other pairs a weight equal to the number

of positive examples m+. We call our modi�cation of this algorithm IGMML.

50% 40% 30% 20% 10% 5% 4% 3% 2% 1%
Percentage of positive examples

0
10
20
30
40
50
60
70
80
90

100

F1
-m

ea
su

re

Mean results over the 22 datasets
GMML IGMML IML

Figure 2.7: Mean F1-measure over 20 splits and over the 22 datasets by arti�cially increasing

the imbalance. We compare the existing metric learning algorithm GMML with a variant

(IGMML) that incorporates our two strategies to deal with the imbalance.

We report the results of this experiment in Figure 2.7. As already noticed, we observe

that the algorithms present the same performances when the data is balanced. On the other

hand, the variant built upon our two strategies tend to improve the results when increasing the

imbalance. This shows that our contributions are not speci�c to our proposed metric learning

method IML and can also be adapted to existing metric learning methods. However, it is

worth noticing that plugged into IML allows us to get better results. Even if the two strategies

are not speci�c to IML, they work better for our method than for IGMML when facing a

percentage of positive examples lower or equal to 10%.

2.6 Conclusion and perspectives

In this chapter, we revisit the classic formulation of metric learning algorithms that learn a

Mahalanobis metric in the light of imbalanced data issues. Our method resorts to two comple-

mentary strategies to deal with the imbalance. First, unlike the state of the art methods that

do not make any distinction between the pairs, we propose to decompose the usual loss with

respect to the di�erent possible labels involved in the pairs of examples. This decomposition

allows us to assign speci�c weights to each type of pairs in order to improve the performance

on the minority class. We derive a generalization bound speci�c to the imbalanced setting

showing a convergence term depending on the class imbalance and illustrating the hardness of

learning from imbalanced data. Our experimental evaluation shows that we are able to obtain

better results than state of the art metric learning algorithms in terms of F1-measure over

balanced and imbalanced datasets. Last but not least, arti�cially increasing the imbalance in

56

Chapter 2. Metric Learning from Imbalanced Data with Generalization Guarantees

the datasets shows that our two strategies to deal with the imbalance are complementary while

easily adaptable to existing metric learning algorithms.

We believe that our work gives rise to exciting perspectives when facing imbalanced data.

Among them, we want to study how our algorithm could be adapted to learn non-linear metrics.

From an algorithmic point of view, we would like to extend our method by deriving a closed form

solution in a similar way as done by Zadeh et al. [2016] to drastically reduce the computation

time while maintaining good performances.

57

58

Chapter 3

Ensemble Learning with Random

Fourier Features and Boosting

This chapter is based on the following publications

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban and Valentina Zantedeschi. Landmark-based Ensemble Learning with Random Fourier

Features and Gradient Boosting. In European Conference on Machine Learning & Principles

and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020 [Gautheron et al.,

2020b].

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban and Valentina Zantedeschi. Apprentissage d'ensemble basé sur des points de repère

avec des caractéristiques de Fourier aléatoires et un renforcement du gradient. In Conférence

sur l'Apprentissage automatique (CAp), 2020 [Gautheron et al., 2020a].

Léo Gautheron, Pascal Germain, Amaury Habrard, Gaël Letarte, Emilie Morvant, Marc Seb-

ban and Valentina Zantedeschi. Revisite des �random Fourier features� basée sur l'apprentissage

PAC-Bayésien via des points d'intérêts. In Conférence sur l'Apprentissage automatique (CAp),

2019, Toulouse, France [Gautheron et al., 2019a].

Abstract

This chapter jointly leverages two state-of-the-art learning strategies�gradient boost-

ing (GB) and kernel Random Fourier Features (RFF)�to address the problem of kernel

learning. Our study builds on a recent result showing that one can learn a distribution

over the RFF to produce a new kernel suited for the task at hand. For learning this dis-

tribution, we exploit a GB scheme expressed as ensembles of RFF weak learners, each of

them being a kernel function designed to �t the residual. Unlike Multiple Kernel Learning

59

3.1. Introduction

techniques that make use of a pre-computed dictionary of kernel functions to select from,

at each iteration we �t a kernel by approximating it from the training data as a weighted

sum of RFF. This strategy allows one to build a classi�er based on a small ensemble of

learned kernel �landmarks� better suited for the underlying application. We conduct a thor-

ough experimental analysis to highlight the advantages of our method compared to both

boosting-based and kernel-learning state-of-the-art methods. Our results show that our

method, thanks to an approximation of non-linear kernels, is able to learn quickly complex

decision boundaries that generalizes well with a small number of training examples.

3.1 Introduction

Kernel methods (recalled in Section 1.2.2) are among the most popular approaches in machine

learning due to their capability to address non-linear problems, their robustness and their

simplicity. However, they exhibit two main �aws in terms of memory usage and time complexity.

Landmark-based kernel approaches [Balcan et al., 2008] can be used to drastically reduce the

number of instances involved in the comparisons, but they heavily depend on the choice and the

parameterization of the kernel. Multiple Kernel Learning [Wu et al., 2017] and Matching Pursuit

methods [Vincent and Bengio, 2002] can provide alternative solutions to this problem but they

require the use of a pre-de�ned dictionary of base functions. Another strategy to improve the

scalability of kernel methods is to use approximation techniques such as the Nyström [Drineas

and Mahoney, 2005] or Random Fourier Features (RFF) [Rahimi and Recht, 2008] (recalled

in Section 1.3.2). The latter is probably the most used thanks to its simplicity and ease of

computation. It allows the approximation of any shift-invariant kernel based on the Fourier

transform of the kernel. Several works have extended this technique by allowing one to adapt

the RFF approximation directly from the training data [Agrawal et al., 2019, Letarte et al.,

2019, Sinha and Duchi, 2016]. Among them, the recent work of Letarte et al. [2019] introduces a

method to obtain a weighting distribution over the random features by a single pass over them.

This strategy is derived from a statistical learning analysis, starting from the observation that

each random feature can be interpreted as a weak hypothesis in the form of trigonometric

functions obtained by the Fourier decomposition. However, in practice, this method requires

the use of a �xed set of landmarks selected beforehand and independently from the task before

being able to learn the representation in a second step. This leads to three important limitations:

(i) the need for a heuristic strategy for selecting relevant landmarks, (ii) these latter and the

associated representation might not be adapted for the underlying task, and (iii) the number of

landmarks might not be minimal w.r.t. that task, inducing higher computational and memory

costs.

We propose in this chapter to tackle these issues with a gradient boosting approach [Fried-

man, 2001] based on the boosting framework recalled in Section 1.2.5. Our aim is to learn

iteratively the classi�er and a compact and e�cient representation at the same time. Our

greedy optimization method is similar to the one from Oglic and Gärtner [2016], which at each

60

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

iteration of the functional gradient descent [Mason et al., 1999] re�nes the representation by

adding the base function minimizing a residual-based loss function. But unlike our approach,

their method does not allow to learn a classi�er at the same time. Instead, we propose to

jointly optimize the classi�er and the base functions in the form of kernels by leveraging both

gradient boosting and RFF. Interestingly, we further show that we can bene�t from a signi�cant

performance boost by (i) considering each weak learner as a single trigonometric feature, and

(ii) learning the random part of the RFF. This way to proceed allows us to learn well even from

small datasets.

Organization of the chapter. Section 3.2 describes the notations and the necessary back-

ground knowledge. We present our method in Section 3.4 as well as two e�cient re�nements

before presenting an extensive experimental study in Section 3.5, comparing our strategy with

boosting-based and kernel learning methods.

3.2 Notations and related work

In this chapter, we consider binary classi�cation tasks as introduced in Chapter 1. We focus

on kernel-based algorithms that rely on pre-de�ned kernel functions k : Rd×Rd → R assessing

the similarity between any two points of the input space. These methods present a good

performance when the parameters of the kernels are learned and the chosen kernels are able

to �t the distribution of the data, as shown in Figure 1.7. However, selecting the right kernel

and tuning its parameters is computationally expensive, in general. To reduce this overhead,

one can resort to Multiple Kernel Learning techniques [Wu et al., 2017] which boils down to

selecting the combination of kernels that �ts the best the training data: a dictionary of T base

functions {kt}Tt=1 is composed of various kernels associated with some �xed parameters, and a

combination is learned, de�ned as

H(x,x′) =

T∑

t=1

αt kt(x,x′), (3.1)

with αt ∈ R the weight of the kernel kt(x,x′). As shown in Section 3.4, our main contribution

is to address this issue of optimizing a linear combination of kernels by leveraging RFF and

gradient boosting (we recall basics on it in Section 3.4.1). To avoid the dictionary of kernel

functions in Equation (3.1) from being pre-computed, we propose a method inspired from

Letarte et al. [2019] to learn a set of approximations of kernels tailored to the underlying

classi�cation task. Unlike Letarte et al. [2019], we learn such functions so that the representation

and the classi�er are jointly optimized. We consider landmark-based shift-invariant kernels

relying on the value δ = xt−x ∈ Rd and usually denoted by abuse of notation by

k(δ) = k(xt−x) = k(xt,x),

where xt ∈ Rd is a point�called landmark�lying on the input space which all the instances

are compared to, and that strongly characterizes the kernel.

61

3.3. Pseudo-bayesian kernel learning with RFF

At each iteration of our gradient boosting procedure, we optimize not only this landmark

but also the kernel function itself, exploiting the �exibility of the framework provided by Letarte

et al. [2019]. We write the kernel as a sum of RFF [Rahimi and Recht, 2008] and we learn a

posterior distribution over them. We achieve this by studying the generalization capabilities of

the so-de�ned functions through the lens of the PAC-Bayesian recalled in Section 1.1.5. This

theoretical analysis ultimately allows us to derive a closed-form solution of the posterior distri-

bution qt (over the RFF at a given iteration t), which is guaranteed to minimize a generalization

bound on the loss of the kernel. In the following section, we recall the framework of Letarte

et al. and adapt it to our scenario.

3.3 Pseudo-bayesian kernel learning with RFF

The kernel learning method proposed by Letarte et al. [2019] builds on the RFF approximation

proposed by Rahimi and Recht [2008] and recalled in Section 1.3.2. Instead of drawing RFF for

approximating a known kernel, Letarte et al. propose to learn a new one by deriving a posterior

distribution qt for a given landmark point in {xt}Tt=1:

kqt(x
t − x) = E

ω∼qt
cos
(
ω · (xt − x)

)
.

Their kernel learning approach �rst considers p the Fourier transform of a given kernel k as a

prior distribution. Then, they aim at learning the posterior distribution qt by minimizing a PAC-

Bayesian generalization bound on the expected value of a loss between the landmark (xt, yt)

and any point (x, y) ∼ D. Following the RFF framework, this kernel can be approximated in

practice by drawing K vectors ω according to p and then re-weighting each random feature

according to qt by computing

kqt(x
t − x) =

K∑

j=1

qtj cos
(
ωj · (xt − x)

)
, (3.2)

where qt is the empirical counterpart of the distribution qt de�ned such that

∀j ∈ {1, . . . ,K}, 0 ≤ qtj ≤ 1, and
K∑

j=1

qtj = 1.

Let (xt, yt) be an example called landmark and kqt the kernel built using this landmark,

then the true risk R(kqt) and empirical risk R̂(kqt) of the kernel are respectively de�ned as

R(kqt) = E
(x,y)∼D

`
(
kqt(x

t − x)
)
, and R̂(kqt) =

1

m− 1

m∑

j=1,j 6=t
`
(
kqt(x

t − xj)
)
.

Using the PAC-Bayesian theory, they obtain the following theorem, under the linear loss

`
(
kqt(x

t − x)
)

= 1
2 − 1

2y
tykqt(x

t − x), by expressing the loss as

R(kqt) = R

(
E
ω∼p

htω

)

62

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

= E
ω∼p

R(htω),

with htω(x) = cos(ω · (xt − x)).

Theorem 5 (Theorem 1 from Letarte et al. [2019]). For s > 0, ∀i ∈ {1, . . . ,m}, and a prior

distribution p over Rd, with probability 1 − δ over the random choice of S ∼ Dm, we have

∀q ∈ Rd:

R(kq) ≤ E
ω∼p

R̂(htω) +
1

s

(
KL(q‖p) +

s2

2(m− 1)
+ ln

1

δ

)
,

where KL(q‖p) = Eω∼p p(ω)
q(ω) is the Kullback-Leibler divergence between q and p.

We note that the result also stands for any [0, 1]-valued convex loss `. Indeed, by Jensen's

inequality, we have

R(kqt) = R

(
E
ω∼p

htω

)
≤ E
ω∼p

R(htω).

As described in Section 1.1.5, this bound is interesting because there exists a closed form

solution minimizing it (see Germain et al. [2009] and Letarte et al. [2019]) and computed in

this setting as

∀j ∈ {1, . . . ,K}, qtj =
1

Zt
exp

(
−β√m
m

m∑

i=1

`
(
htωj

(xi)
))

, (3.3)

with β ≥ 0 a parameter to tune and Zt a normalization constant such that
∑K

j=1 q
t
j=1.

The proposed method of Letarte et al. [2019] consists in a �rst step to learn a representation

of the input space of nL features where each new feature ∀t ∈ {1, . . . , nL} is computed using the

kernel kqt computed according to Equations (3.2) and (3.3) with the landmark (xt, yt). To do

so, they consider a set of nL landmarks L =
{

(xt, yt)
}nL

t=1
which they choose either as randomly

from the training set, or as the centers of a clustering of the training set. Then, during a second

step, a (linear) predictor can be learned from the new representation.

It is worth noticing that this kind of procedure exhibits two limitations. First, the model can

be optimized only after having learned the representation. Second, the landmarks have to be

�xed before learning the representation. Thus, the constructed representation is not guaranteed

to be compact and relevant for the learning algorithm considered. To tackle these issues, we

propose in the following a strategy that performs both steps at the same time through a gradient

boosting process that allows to jointly learn the set of landmarks and the �nal predictor.

3.4 Gradient boosting random Fourier features

The approach we propose follows the widely used gradient boosting framework �rst introduced

by Friedman [2001]. We brie�y recall it below.

63

3.4. Gradient boosting random Fourier features

Algorithm 3.1: Gradient boosting [Friedman, 2001]

Inputs : Training set S =
{

(xi, yi)
}m
i=1

; Loss `; Number of iterations T

Output: sign
(
H0(x) +

∑T
t=1 α

that(x)
)

1: ∀i ∈ {1, . . . ,m} H0(xi) = arg minρ
∑m

i=1 `(yi, ρ)

2: for t ∈ {1, . . . , T} do
3: ∀i ∈ {1, . . . ,m} ỹi = −∂`

(
yi, H

t−1(xi)
)

∂Ht−1(xi)

4: at = arg mina

∑m
i=1

(
ỹi − ha(xi)

)2

5: αt = arg minα
∑m

i=1 `
(
yi, H

t−1(xi) + αhat(xi)
)

6: ∀i ∈ {1, . . . ,m} Ht(xi) = Ht−1(xi) + αthat(xi)

7: end for

3.4.1 Gradient boosting in a nutshell

Gradient boosting is an ensemble method that aims at learning a weighted majority vote over

an ensemble of T weak predictors in a greedy way by learning one classi�er per iteration. The

�nal majority vote is of the form

∀x ∈ Rd, sign

(
H0(x) +

T∑

t=1

αthat(x)

)
,

where H0 is an initial classi�er �xed before the iterative process (usually set such that it returns

the same value for every example), and αt is the weight associated to the predictor hat and

is learned at the same time as the parameters at of that classi�er. Given a di�erentiable loss

`, the objective of the gradient boosting algorithm is to perform a gradient descent where the

variable to be optimized is the ensemble and the function to be minimized is the empirical

loss. The pseudo-code of gradient boosting is reported in Algorithm 3.1. First, the ensemble is

constituted by only one predictor: the one that outputs a constant value minimizing the loss

over the whole training set (line 1). Then at each iteration, the algorithm computes for each

training example the negative gradient of the loss (line 3), also called the residual and denoted

by ỹi. The next step consists in optimizing the parameters of the predictor hat that �ts the

best the residuals (line 4), before learning the optimal step size αt that minimizes the loss by

adding hat , weighted by αt, to the current vote (line 5). Finally, the model is updated by

adding αthat(·) (line 6) to the vote.

3.4.2 Gradient boosting with random Fourier features

Our main contribution takes the form of a learning algorithm which jointly optimizes a compact

representation of the data and the model. Our method, called GBRFF1, leverages both

Gradient Boosting and RFF. We describe its pseudo-code in Algorithm 3.2 which follows the

steps of Algorithm 3.1. The loss function ` at the core of our algorithm is the exponential loss

`
(
HT
)

=
1

m

m∑

i=1

exp
(
− yiHT (xi)

)
. (3.4)

64

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

Algorithm 3.2: GBRFF1

Inputs : Training set S =
{

(xi, yi)
}m
i=1

; Number of iterations T ;

K number of random features; Parameters γ and β

Output: sign
(
H0(x) +

∑T
t=1 α

t
∑K

j=1 q
t
j cos

(
ωtj · (xt − x)

))

1: ∀i ∈ {1, . . . ,m} H0(xi) = 1
2 ln

1+
1
m

∑m
j=1 yj

1− 1
m

∑m
j=1 yj

2: for t ∈ {1, . . . , T} do
3: ∀i ∈ {1, . . . ,m} wi = exp(−yiHt−1(xi))

4: ∀i ∈ {1, . . . ,m} ỹi = yiwi

5: ∀j ∈ {1, . . . ,K}, draw ωtj ∼ N (0, 2γ)d

6: xt = arg min
x∈Rd

1

m

∑m
i=1 exp

(
− ỹi 1

K

∑K
j=1 cos(ωtj · (x− xi))

)

7: ∀j ∈ {1, . . . ,K} qtj = 1
Zt exp

(
−β√m
m

∑m
i=1 exp

(
− ỹi cos

(
ωtj · (xt − xi)

))
)

8: αt = 1
2 ln

∑m
i=1

(
1+yi

∑K
j=1 q

t
j cos

(
ωt

j ·(xt−xi)
))

wi∑m
i=1

(
1−yi

∑K
j=1 q

t
j cos

(
ωt

j ·(xt−xi)
))

wi

9: ∀i ∈ {1, . . . ,m} Ht(xi) = Ht−1(xi) + αt
∑K

j=1 q
t
j cos

(
ωtj · (xt − xi)

)

10: end for

We show in Figure 3.1 the intuition on why the exponential loss is more adapted to binary

classi�cation tasks compared to the usually used least square loss in Gradient Boosting algo-

rithms [Friedman, 2001]. Given ` as the exponential loss, line 1 of Algorithm 3.1 amounts to

setting the initial learner as

∀i ∈ {1, . . . ,m} H0(xi) =
1

2
ln

1 + 1
m

∑m
j=1 yj

1− 1
m

∑m
j=1 yj

. (3.5)

The residuals of line 3 are de�ned as ỹi = −∂`
(
yi, H

t−1(xi)
)

∂Ht−1(xi)
= yi exp

(
− yiHt−1(xi)

)
. Line 4

of Algorithm 3.1 tends to learn a weak learner that outputs exactly the residuals' values by

minimizing the squared loss; but, this is not well suited in our setting with the exponential loss

(Equation (3.4)). To bene�t from the exponential decrease of the loss, we are rather interested

in weak learners that output predictions having a large absolute value and being of the same

sign as the residuals. Thus, we aim at favoring parameter values minimizing the exponential

loss between the residuals and the predictions of the weak learner as follows:

at = arg min
a

1

m

m∑

i=1

exp
(
− ỹiha(xi)

)
. (3.6)

Following the RFF principle, we can now de�ne our weak learner as

hat(xi) =

K∑

j=1

qtj cos
(
ωtj · (xt − xi)

)
, (3.7)

65

3.4. Gradient boosting random Fourier features

It
er

at
io

n
10

Least Square Loss

-0.23

-1.05

-0.32
-1.23

-0.86

-0.78

0.31

0.80

0.36 1.37

0.92

0.67

-1.8

-0.1

1.7
Exponential Loss

-0.32

-0.67

-0.36
-1.46

-1.02

-0.38

0.40

0.79

0.45 1.49

1.09

0.33

-1.6

-0.0

1.5

It
er

at
io

n
10

0

-0.81

-1.20

-0.73
-1.01

-0.91

-1.07

0.79

1.18

0.74 1.12

0.92

1.03

-2.6

0.1

2.8

-4.16

-7.81

-4.15
-3.85

-4.58

-6.23

3.98

8.17

4.47 3.86

4.54

6.08

-8.8

-0.2

8.3

It
er

at
io

n
10

00

-1.00

-1.00

-1.00
-1.00

-1.00

-1.00

1.00

1.00

1.00 1.00

1.00

1.00

-2.7

0.3

3.2

-36.34

-52.11

-36.35
-35.95

-36.34

-38.34

36.26

59.59

36.69 35.85

36.70

37.68

-58.5

2.0

62.5

Figure 3.1: Predicted values by our proposed method depending on the loss function used. The

least square loss (left) is more adapted for regressions tasks as it encourages to predict exactly the

true labels −1 and +1. On the right, the exponential loss is more adapted to binary classi�cation

tasks because it encourages to have predictions with the same sign as the true labels, resulting

in a decision boundary with a larger margin to the examples.

where its parameters are given by at=({ωtj}Kj=1,x
t, qt). Instead of using a pre-de�ned set of

landmarks [Letarte et al., 2019], we build this set iteratively, i.e., we learn one landmark per

iteration. To bene�t from the closed form of Equation (3.3), we propose the following greedy

approach to learn the parameters at. At each iteration t, we draw K vectors {ωtj}Kj=1∼pK with

p the Fourier transform of a given kernel (as de�ned in Equation (1.3)); then we look for the

optimal landmark xt. Plugging Equation (3.7) into Equation (3.6) and assuming a uniform

prior distribution over the random features, xt is learned to minimize

xt = arg min
x∈Rd

f(x) =
1

m

m∑

i=1

exp
(
− ỹi

1

K

K∑

j=1

cos(ωtj · (x− xi))
)
. (3.8)

Even if this problem is non-convex due to the cosine function, we can still compute its derivative

and perform a gradient descent to �nd a possible solution. The partial derivative of Equa-

66

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

tion (3.8) with respect to x is given by

∂f

∂x
(x)=

1

Km

m∑

i=1

 ỹi
K

K∑

j=1

sin(ωtj · (x−xi))

 exp

− ỹi

K

K∑

j=1

cos(ωtj · (x−xi))

K∑

j=1

ωtj .

According to Letarte et al. [2019], given the landmark xt found by gradient descent, we can

now compute the weights of the random features qt as

∀j ∈ {1, . . . ,K}, qtj=
1

Zt
exp

[
−β√m
m

m∑

i=1

exp
(
− ỹi cos

(
ωtj · (xt − xi)

))
]
, (3.9)

with β ≥ 0 a parameter to tune and Zt the normalization constant.

The last step concerns the step size αt. It is computed so as to minimize the combination

of the current model Ht−1 with the weak learner ht, i.e.,

αt =arg min
α

m∑

i=1

exp
[
−yi(Ht−1(xi)+αh

t(xi))
]

=arg min
α

m∑

i=1

wi exp
[
−yiαht(xi)

]
,

where wi = exp(−yiHt−1(xi)). In order to have a closed-form solution of α, we use the convexity

of the above quantity and the fact that ht(xi) ∈ [−1, 1] to bound the loss function to optimize.

Indeed, we get

m∑

i=1

wi exp
(
− yiαht(xi)

)
≤

m∑

i=1

[
1−yiht(xi)

2

]
wi exp(α)+

m∑

i=1

[
1+yih

t(xi)

2

]
wi exp(−α).

This upper bound is strictly convex. Its minimum αt can be found by setting to 0 the derivative

w.r.t. α of the right-hand side of the previous equation. We get

m∑

i=1

(
1− yiht(xi)

2

)
wi exp(α)

=
m∑

i=1

(
1 + yih

t(xi)

2

)
wi exp(−α),

for which the solution is given by αt =
1

2
ln

(∑m
i=1(1− yiht(xi))wi∑m
i=1(1 + yiht(xi))wi

)
.

The same derivation can be used to �nd the initial predictor H0.

As usually done in the RFF literature [Agrawal et al., 2019, Rahimi and Recht, 2008, Sinha

and Duchi, 2016] we use the RBF kernel de�ned as kγ(x,x′)= exp(−γ‖x− x′‖2) with as Fourier

transform vectors of d numbers each drawn from the normal law with zero mean and variance

2γ that we denote N (0, 2γ)d.

3.4.3 Re�ning GBRFF1

In GBRFF1, the number of random features K used at each iteration has a direct impact

on the computation time of the algorithm. Moreover ωt is drawn according to the Fourier

67

3.4. Gradient boosting random Fourier features

Algorithm 3.3: GBRFF2

Inputs : Training set S =
{

(xi, yi)
}m
i=1

; Number of iterations T ;

Parameters γ and λ

Output: sign
(
H0(x) +

∑T
t=1 α

t cos
(
ωt · x− bt

))

1: ∀i ∈ {1, . . . ,m} H0(xi) = 1
2 ln

1+
1
m

∑m
j=1 yj

1− 1
m

∑m
j=1 yj

2: for t ∈ {1, . . . , T} do
3: ∀i ∈ {1, . . . ,m} wi = exp(−yiHt−1(xi))

4: ∀i ∈ {1, . . . ,m} ỹi = yiwi

5: Draw ω ∼ N (0, 2γ)d

6: bt = arg min
b∈[−π,π]

1
m

∑m
i=1 exp

(
− ỹi cos

(
ω · xi − b)

))

7: ωt = arg min
ω∈Rd

λ‖ω‖22 + 1
m

∑m
i=1 exp

(
− ỹi cos

(
ω · xi − bt)

))
.

8: αt = 1
2 ln

∑m
i=1

(
1+yi cos

(
ωt·xi−bt

))
wi∑m

i=1

(
1−yi cos

(
ωt·xi−bt

))
wi

9: ∀i ∈ {1, . . . ,m} Ht(xi) = Ht−1(xi) + αt cos
(
ωt · xi − bt

)

10: end for

transform of the RBF kernel and thus is not learned. The second part of our contribution is to

propose two re�nements. First, we bring to light the fact that one can drastically reduce the

complexity of GBRFF1 by learning a rough approximation of the kernel, yet much simpler

and still very e�ective, using K=1. In this scenario, we show that learning the landmarks boils

down to �nding a single real number in [−π, π]. Then, to speed up the convergence of the algo-

rithm, we suggest to optimize ωt after a random initialization from the Fourier transform. We

show that a simple gradient descent with respect to this parameter allows a faster convergence

with better performance. These two improvements lead to a variant of our original algorithm,

called GBRFF2 and presented in Algorithm 3.3.

Cheaper landmark learning using the periodicity of the cosine. As we set K=1, the

weak learner hat(x) is now simply de�ned as

hat(x) = cos
(
ωt · (xt − x)

)
,

where its parameters are given by at = (ωt,xt). This formulation allows us to eliminate the

dependence on the hyper-parameter K. Moreover, one can also get rid of β, because learning

the weights qt (line 7 of Algorithm 3.2) is no more necessary. Instead, since K=1, we can see

αt learned at each iteration as a surrogate of these weights. As our weak learner is based on

a single random feature, the objective function (line 6) to learn the landmark at iteration t

becomes

xt = arg min
x∈Rd

fωt(x) =
1

m

m∑

i=1

exp
(
− ỹi cos(ωt · (x− xi))

)
.

68

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

Let c ∈ {1, . . . , d} be the index of the c-th coordinate of the landmark xt. We can rewrite the

objective function as

fωt(xt) =
1

m

m∑

i=1

exp
(
− ỹi cos

(
ωt·xt−ωt·xi

))

=
1

m

m∑

i=1

exp
(
− ỹi cos(ωtcx

t
c +

∑

j 6=c
ωtjx

t
j−ωt·xi)

)
.

We leverage the periodicity of the cosine function along each direction to �nd the optimal

cth coordinate of the landmark xtc ∈
[−π
ωt
c
, πωt

c

]
that minimizes fωt(xt) by �xing all the other

coordinates. Figure 3.2 illustrates this phenomenon on the two-moons dataset when applying

GBRFF1 with K=1. The plots in the �rst row show the periodicity of the loss represented as

repeating diagonal green/yellow stripes (light yellow is associated to the smallest loss). There

is an in�nite number of landmarks giving such a minimal loss at the middle of the yellow

stripes. Thus, by setting one coordinate of the landmark to an arbitrary value, the algorithm

is still able at any iteration to �nd along the second coordinate a value that minimizes the loss

(the resulting landmark at the current iteration is depicted by a white cross). The second row

shows that such a strategy allows us to get an accuracy of 100% on this toy dataset after 10

iterations. By generalizing this, instead of learning a landmark vector xt ∈ Rd, we �x all but

one coordinate of the landmark to 0, and then learn a single scalar bt ∈ [−π, π] that minimizes

fωt(bt) =
1

m

m∑

i=1

exp
(
− ỹi cos(ωt · xi − bt)

)
.

Learning ωt for faster convergence. The second re�nement concerns the randomness of the

RFF due to vector ωt. So far, the latter was drawn according to p and then used to learn bt.

We suggest instead to �ne-tune ωt by doing a gradient descent with as initialization the vector

drawn from p. Supported by the experiments performed in the following, we claim that such a

strategy allows us to both speed up the convergence of the algorithm and boost the accuracy.

This update requires to add a line of code, just after line 6 of Algorithm 3.2, expressed as a

regularized optimization problem:

ωt = arg min
ω∈Rd

λ‖ω‖22 +
1

m

m∑

i=1

exp
(
− ỹi cos(ω · xi − bt)

)
,

its derivative being

∂fω
∂ω

(ω) = 2λω +
1

m

m∑

i=1

xiỹi sin(ω · xi − bt) exp
(
− ỹi cos(ω · xi − bt)

)
.

3.5 Experimental evaluation

The objective of this section is three-fold: �rst, we aim to bring to light the interest of learning

the landmarks rather than �xing them as done in Letarte et al. [2019]; second we study the

69

3.5. Experimental evaluation

Figure 3.2: GBRFF1 with K=1 on the two-moons dataset at di�erent iterations. Top row

shows the periodicity of the loss (light yellow indicates the minimal loss). Bottom row shows the

resulting decision boundaries between the classes (blue & red) by �xing arbitrarily one coordinate

of the landmark and minimizing the loss along the other one.

impact of the number K of random features; lastly, we perform an extensive experimental

comparison of our algorithms. The Python code of all experiments and the data used are

publicly available1.

3.5.1 Setting

For GBRFF1 and GBRFF2, we select by cross-validation the hyper-parameter γ ∈ 2{−2,...,2}

d .

For GBRFF2, we also tune λ ∈ {0, 2{−5,...,−2}}. We compare our two methods with the

following algorithms.

• LGBM [Ke et al., 2017] is a state-of-the-art gradient boosting method using trees as base

predictors. We select by cross-validation the maximum tree depth in {1, . . . , 10} and the L2

regularization parameter λ ∈ {0, 2{−5,...,−2}}.
• BMKR [Wu et al., 2017] is a Multiple Kernel Learning method based on gradient boosting

with least square loss. It selects at each iteration the best kernel plugged inside an SVR to �t

the residuals among 10 RBF kernels with γ ∈ 2{−4,...,5} and the linear kernel k(x,x′) = x>x′.

The SVR algorithm is a direct adaptation of the kernelized SVM algorithm described in Section

1.2.2 but where the label to predict is a real number in SVR instead of a class in SVM. We

select by cross-validation the SVR parameter C ∈ 10{−2,...,2}.

• GFC [Oglic and Gärtner, 2016] is a greedy feature construction method based on functional

gradient descent. It iteratively re�nes the representation learned by adding a feature that

1The code is available here: https://leogautheron.github.io

70

https://leogautheron.github.io

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

Table 3.1: Description of the datasets (n: number of examples, d: number of features, c:

number of classes) and the classes chosen as negative (-1) and positive (+1).

Name m d c Label -1 Label +1 Name m d c Label -1 Label +1

wine 178 13 3 2, 3 1 australian 690 14 2 0 1

sonar 208 60 2 M R pima 768 8 2 0 1

newthyroid 215 5 3 1 2, 3 vehicule 846 18 4 van bus, opel, saab

heart 270 13 2 1 2 german 1000 23 2 1 2

bupa 345 6 2 2 1 splice 3175 60 2 +1 -1

iono 351 34 2 g b spambase 4597 57 2 0 1

wdbc 569 30 2 B M occupancy 20560 5 2 0 1

balance 625 4 3 B, R L bankmarketing 45211 51 2 no yes

matches the residual function de�ned for the least squared loss. We use the �nal representation

to learn a linear SVM where C ∈ 10{−2,...,2} is selected by cross-validation.

• PBRFF [Letarte et al., 2019] described in Section 3.3 that (1) draws with replacement nL

landmarks from the training set; (2) learns a representation of nL features where each feature is

computed using Equation (3.2) based on K=10 vectors drawn like our methods from N (0, 2γ)d;

(3) learns a linear SVM on the new representation. We select by cross-validation its parameters

γ ∈ 2{−2,...,2}

d , β ∈ 10{−2,...,2} and the SVM parameter C ∈ 10{−2,...,2}.

We consider 16 datasets coming mainly from the UCI repository that we binarized as de-

scribed in Table 3.1. Note that, we generate for each dataset 20 random 70%/30% train/test

splits. Most of them (except occupancy and bankmarketing) are made of a small number of

training examples, one of our objective being to show the e�ciency of our method in such a

scenario. Datasets are pre-processed such that each feature in the training set has 0 mean and

unit variance; the factors computed on the training set are then used to scale each feature in the

test set. All parameters are tuned by 5-fold cross-validation on the training set by performing

a grid search.

Compared to the baseline method PBRFF, our two proposed methods GBRFF1 and

GBRFF2 rely on di�erent strategies in order to obtain an e�ective and e�cient classi�er. In

the following, we propose di�erent experiments that give some insights on the impact of the

strategies used on both the classi�cation accuracy and the computation time.

3.5.2 The importance of learning the landmarks in GBRFF1

Our methodGBRFF1 is based onPBRFF but is di�erent in two points: (i) it learns the model

at the same time as the representation instead of �rst learning the representation and then the

model and (ii) it learns the landmarks used to build the representation instead of selecting them

randomly from the training set. We compare these two methods to a variant calledGBRFF0.5

which is identical to GBRFF1 except that we do not learn the landmarks in this variant, but

71

3.5. Experimental evaluation

we select them randomly as done in PBRFF. Figure 3.3 compares these three methods. We

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

65

70

75

80

85

Ac
cu

ra
cy

PBRFF K=10 GBRFF0.5 K=10 GBRFF1 K=10

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

0

50

100

150

200

250

Co
m

pu
ta

tio
n

tim
e

in
 se

co
nd

s
Figure 3.3: Mean accuracy (left) and sum of computation time using the best parameters found

with cross-validation (right) over 20 train/test splits and over the 15 �rst datasets (except

�bankmarketing�) for the three methods PBRFF, GBRFF0.5 and GBRFF1 using from 1

to 50 landmarks.

see that GBRFF0.5 is faster than PBRFF but that it also leads to a lower accuracy. Thus,

simply adapting the two step learning method of PBRFF in the one step learning method

GBRFF0.5 degrades the performances while slightly decreasing the computation time. These

lower performances might come from the boosting classi�er which is less e�ective than the SVM

classi�er in this setting. However, when comparing GBRFF0.5 and GBRFF1, we observe

that learning the landmarks allows to improve the accuracy which becomes better than the one

obtained by PBRFF, but at the price of an increase of the computation time which becomes

superior than both GBRFF0.5 and PBRFF. These promising results in terms of accuracies

motivate us to improve the learning strategy of the landmarks in GBRFF1 to make it more

e�cient.

3.5.3 Improving the e�ciency of GBRFF1

A key element of both PBRFF and GBRFF1 is K, the amount of random features used for

each landmark. We compare the performances and computation time of GBRFF1 when using

di�erent numbers of random features per landmark. The results of this experiment are reported

in Figure 3.4. As expected, the accuracy is better using more random features per landmark,

but requiring of an increasingly higher computation time. It seems that the higher the amount

of random features is, the smaller the gain is in accuracy but the higher the addition to the

computation time is. To illustrate this, we present in Figure 3.5 the accuracy divided by the

computation time. The results show that GBRFF1 with K = 1 presents the best compromise

accuracy/computation time, meaning that even if for a �xed amount of landmarks T we can

obtain better performances with a large value of K, it is more interesting to set K = 1 and use

72

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

65

70

75

80

85

Ac
cu

ra
cy

GBRFF1 K=20 GBRFF1 K=10 GBRFF1 K=5 GBRFF1 K=1

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

0

100

200

300

400

Co
m

pu
ta

tio
n

tim
e

in
 se

co
nd

s

Figure 3.4: Mean accuracy (left) and sum of computation time using the best parameters found

with cross-validation (right) over 20 train/test splits and over the 15 �rst datasets (except the

largest dataset �bankmarketing�) for GBRFF1 with K ∈ {1, 5, 10, 20} random features used per

landmark using from 1 to 50 landmarks.

a large amount of landmarks T to obtain similar performances in less time. This behavior is

con�rmed by the results presented in Figure 3.6 showing that for di�erent values of T ×K, we

need to set K = 1 and use a large value of T to obtain the best accuracy. To understand why

it is better to use a small amount K of random features per landmark, but a large amount of

landmarks T , we remind the formula of the �nal predictor of GBRFF1 for a given example x

which is

sign

H0(x) +

T∑

t=1

αt
K∑

j=1

qtj cos
(
ωtj · (xt − x)

)

but that simpli�es when K = 1 to

sign

(
H0(x) +

T∑

t=1

αt cos
(
ωt · (xt − x)

)
)
.

At a given iteration t, the objective is to learn the landmark xt, the boosting weight αt and the

random feature weights qt that �t well the residuals de�ned by the exponential loss. Conse-

quently, if K increases, so does the amount of constraints imposed at a given iteration to learn

the landmark and the boosting weight. A possible explanation is that when K = 1, it is simpler

to �nd a landmark and a weight αt that correctly �t the residuals because both of them are

less constrained. On the other hand, when using a large amount of random features, there is

no possible solution that �ts well the residuals under the constraints imposed by the random

features.

The results presented motivate us to build upon GBRFF1 using the smallest possible

amount of random feature K = 1 per landmark.

73

3.5. Experimental evaluation

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

0

20

40

60

Ac
cu

ra
cy

 d
iv

id
ed

 b
y

tim
e

GBRFF1 K=20
GBRFF1 K=10

GBRFF1 K=5
GBRFF1 K=1

Figure 3.5: Mean accuracy divided by sum of computation time using the best parameters learned

with cross-validation for GBRFF1 with K ∈ {1, 5, 10, 20} random feature used per landmark

using from 1 to 50 landmarks over 20 train/test splits and over the 15 �rst datasets (except the

largest dataset �bankmarketing�).

3.5.4 From GBRFF1 to GBRFF2

Our proposed method GBRFF2 is di�erent from GBRFF1 as (i) it uses a unique random

feature per landmark and because (ii) the random part of the random feature ω is learned

instead of �xed randomly. We introduce a variant called GBRFF1.5 identical to GBRFF2

except for ω which is not learned but remains �xed randomly. This variant is di�erent from

GBRFF1 because the use of a unique random feature allows to learn a single scalar instead

of a landmark vector to obtain the same model as GBRFF1 with K = 1 more e�ciently.

The comparison in Figure 3.7 between GBRFF1 with K = 1 and GBRFF1.5 shows as

expected that the two methods lead exactly to the same performances but with a much smaller

computation time for GBRFF1.5. This con�rms that when using a unique random feature, it

is equivalent to learn a single scalar in [−π, π] and a landmark vector in Rd, and this is much

faster.

On the other hand, GBRFF2 gives better performances than GBRFF1.5, especially with

a very small amount of landmarks, but with a larger of the computation time. Compared with

GBRFF1, GBRFF2 is faster for K > 1 or as fast for K = 1, and GBRFF2 also achieves

higher performances, even when using K = 20 random features for GBRFF1.

74

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

74.86

82.63

85.25 86.07 86.87 87.63

77.90

84.23
86.07 86.91 87.51 88.03

79.71

85.34
86.75 87.47 87.90 88.35

82.47

86.74 87.53 87.97 88.16 88.55

20 100 200 300 500 1000
Total number of random features used in the whole process (T ×K)

70

75

80

85

90

A
cc

ur
ac

y
GBRFF1 K=20 GBRFF1 K=10 GBRFF1 K=5 GBRFF1 K=1

Figure 3.6: Mean results over the 16 datasets w.r.t. the same total amount of random features

T×K for K ∈ {1, 5, 10, 20}, with T the amount of boosting iterations.

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

65

70

75

80

85

90

Ac
cu

ra
cy

GBRFF1 K=1 GBRFF1 K=20 GBRFF1.5 GBRFF2

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

0

100

200

300

400
Co

m
pu

ta
tio

n
tim

e
in

 se
co

nd
s

Figure 3.7: Mean accuracy (left) and sum of computation time using the best parameters found

with cross-validation (right) over 20 train/test splits and over the 15 �rst datasets (except the

largest dataset �bankmarketing�) for GBRFF1, GBRFF1.5 and GBRFF2 using from 1 to

50 landmarks.

3.5.5 In�uence of learning the landmarks

We present in Figure 3.8 the behavior of the three methods that make use of landmarks and

RFF, that is PBRFF,GBRFF1 andGBRFF2. With more than 25 landmarks, PBRFF and

GBRFF1 show similar mean accuracy and reach about 87.5% after 50 iterations. However,

for a small set of landmarks (in particular smaller than 25) GBRFF1 is consistently supe-

rior by about 1 point higher than PBRFF, showing the interest of learning the landmarks.

But the certainly most striking result comes from the performance of our variant GBRFF2

which outperforms the two competing methods. This is particularly true for a small amount

of landmarks. Notice that GBRFF2 is able to reach its maximum with about 20 landmarks,

while GBRFF1 and PBRFF require more iterations without reaching the same performance.

This de�nitely shows the bene�t of learning the random features compared to drawing them

randomly.

75

3.5. Experimental evaluation

1 5 10 15 20 25 30 35 40 45 50
Number of landmarks

70.0
72.5
75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

PBRFF K=10
GBRFF1 K=10
GBRFF2

Figure 3.8: Mean test accuracy over 20 train/test splits over the 16 datasets. We train the three

methods using from 1 to 50 landmarks.

3.5.6 In�uence of the number of examples on the computation time

The speci�cities of GBRFF2 come from the number of random features K set to 1 at each

iteration and the learning of ωt. We have already shown in Figure 3.2 that this allows us to get

better results. We study in this section how GBRFF2 scales compared to the other methods.

To do so, we consider arti�cial datasets with an increasing number of examples (generated with

scikit-learn [Pedregosa et al., 2011] library's make_classification function). The initial size

is set to 150 examples, and we successively generate datasets with a size equal to the previous

dataset size multiplied by 1.5. Here, we do not split the datasets in train and test as we are

not interested in the accuracy. We report the time in seconds necessary to train the models

and to predict the labels on the whole datasets. The parameters are �xed as follows: C = 1

for the methods using SVM or SVR; the tree depth is set to 5 for LGBM; K = 10, γ = 1
d ,

and β = 1 for PBRFF and GBRFF1; γ = 1
d and λ = 0 for GBRFF2. All the methods are

run with 100 iterations (or landmarks) and are not run on datasets requiring more than 1000

seconds of execution time (because larger datasets requiring more than 1000 seconds by the

fastest method do not �t in the RAM memory of the computer used for the experiments). We

report the results in Figure 3.9.

We �rst recall thatGBRFF2 learns at each iteration a random feature and a landmark while

GBRFF1 only learns the landmark and PBRFF draws them randomly. Thus, GBRFF1

should present higher computation times compared to PBRFF. However, for datasets with a

number of examples larger than 20, 000, GBRFF1 becomes cheaper than PBRFF. This is

due to the fact that the SVM classi�er learned by PBRFF does not scale as well as gradient

boosting-based methods. The two-step methodGFC is in addition also slower thanGBRFF1.

This shows the computational advantage of having a one-step procedure to learn both the

representation and the �nal classi�er. When looking at the time limit of 1000 seconds, both

GBRFF1 and GBRFF2 are the fastest kernel-based methods compared to BMKR, GFC

and PBRFF. This shows the e�ciency of learning kernels in a greedy fashion. We also see that

76

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

1,702 3,829 8,614
19,381

43,606
98,113

220,753
496,693

1,117,558
2,514,505

5,657,635
12,729,678

28,641,775
64,443,993

Number of samples

0

200

400

600

800

1000

T
im

e
in

se
co

nd
s

BMKR GFC PBRFF GBRFF1 GBRFF2 LGBM

Figure 3.9: Computation time in seconds required to train and test the six methods with �xed

parameters on an arti�cial dataset having an increasing number of examples. The whole dataset

is used for training and testing, and a method requiring more than 1000 seconds at a given step

is not trained on the larger datasets.

GBRFF2 performs faster than GBRFF1 for any number of examples. At the limit of 1000

seconds, it is able to deal with datasets that are 10 times larger than GBRFF1, due to the

lower complexity of the learned weak learner used in GBRFF2. Finally, GBRFF2 is globally

the second-fastest method behind the gradient boosting method LGBM that uses trees as base

classi�ers.

3.5.7 Performance comparison between all methods

Table 3.2 presents for each dataset the mean results over the 20 splits using 100 iterations/landmarks

for each method. Due to the size of the dataset �bankmarketing�, we do not report the results of

the algorithms that do not converge in time for this dataset, and we compute the average ranks

and mean results over the other 15 datasets. In terms of accuracy, GBRFF2 shows very good

results compared with the state-of-the-art as it obtains the best average rank among the six

methods and on average the best mean accuracy leaving apart �bankmarketing�. Interestingly,

our method is the only kernel-based one that scales well enough to be applied to this latter

dataset.

3.5.8 GBRFF2 is able to learn complex decision boundaries that generalizes

well on small datasets

In this last experiment, we focus on LGBM and GBRFF2 which have been shown to be

the two best performing methods in terms of accuracy and execution time. Even if BMKR is

among the three best methods in terms of accuracy, we do not consider it for this experiment due

to its poor execution time. Learning a classi�er based on non-linear kernels through GBRFF2

has the advantage of being able to capture non-linear decision surfaces, whereas LGBM is

not well suited for this because it uses trees as base learner. To illustrate this advantage, we

consider three synthetics 2D datasets with non-linearly separable classes. The �rst one, called

77

3.6. Conclusion and perspectives

Table 3.2: Mean test accuracy ± standard deviation over 20 random train/test splits. A `-' in

the last row indicates that the algorithm did not converge in time on this dataset. Average ranks

and mean results are computed over the �rst 15 datasets.

Dataset BMKR GFC PBRFF GBRFF1 LGBM GBRFF2

wine 99.5 ± 1.0 99.3 ± 1.1 98.1 ± 2.1 98.3 ± 1.5 96.6 ± 3.2 98.5 ± 1.6

sonar 78.8 ± 7.2 76.6 ± 3.2 76.7 ± 5.2 81.8 ± 3.5 82.4 ± 4.3 83.0 ± 5.0

newthyroid 96.5 ± 1.7 96.5 ± 2.1 96.5 ± 1.5 95.3 ± 2.2 94.8 ± 2.9 96.9 ± 2.1

heart 85.6 ± 4.0 79.4 ± 4.5 85.4 ± 3.5 83.6 ± 4.0 83.0 ± 3.5 83.1 ± 4.0

bupa 68.1 ± 4.9 64.7 ± 3.2 69.0 ± 4.2 70.3 ± 4.9 72.0 ± 3.3 71.2 ± 4.5

iono 94.2 ± 1.4 91.5 ± 2.3 94.2 ± 1.8 88.2 ± 2.3 93.3 ± 2.5 89.2 ± 2.1

wdbc 96.1 ± 1.2 95.8 ± 1.3 96.5 ± 1.1 96.8 ± 1.1 95.8 ± 1.5 97.3 ± 1.2

balance 96.0 ± 1.2 95.1 ± 2.0 98.9 ± 1.1 97.7 ± 0.7 93.5 ± 2.6 97.7 ± 0.6

australian 85.9 ± 2.0 80.9 ± 2.4 84.6 ± 2.3 86.7 ± 1.7 85.5 ± 1.9 86.9 ± 1.9

pima 76.4 ± 2.0 68.7 ± 2.6 76.1 ± 2.5 76.5 ± 2.7 75.5 ± 2.7 77.1 ± 2.5

vehicle 96.6 ± 1.3 95.9 ± 0.8 96.5 ± 1.4 96.3 ± 1.2 96.7 ± 1.0 97.1 ± 1.0

german 72.3 ± 1.8 64.3 ± 2.8 72.4 ± 1.4 73.7 ± 1.6 73.5 ± 1.7 74.0 ± 1.3

splice 87.5 ± 1.0 87.0 ± 1.0 83.5 ± 0.7 83.9 ± 1.1 97.0 ± 0.5 92.4 ± 0.8

spambase 93.5 ± 0.4 91.3 ± 0.6 91.6 ± 0.7 90.7 ± 0.7 95.6 ± 0.4 92.8 ± 0.6

occupancy 99.3 ± 0.1 98.9 ± 0.7 98.9 ± 0.1 98.8 ± 0.1 99.3 ± 0.1 98.9 ± 0.1

Mean 88.4 ± 2.1 85.7 ± 2.0 87.9 ± 2.0 87.9 ± 2.0 89.0 ± 2.1 89.1 ± 2.0

Average Rank 2.88 4.94 3.75 3.81 3.44 2.19

bankmarketing - - - 89.7 ± 0.2 90.8 ± 0.2 90.0 ± 0.2

�swiss�, represents two spirals of two classes side by side. The second one, namely �circles�,

consists of four circles with the same center and an increasing radius by alternating the class

of each circle. The third dataset, called �board�, consists of a four by four checkerboard with

alternating classes in each cell. Here, both LGBM and GBRFF2 are run for 1000 iterations

to ensure their convergence and parameters are tuned by cross-validation as previously.

Figure 3.10 gives evidence that GBRFF2 is able to achieve much better results than

LGBM when using only a small amount of training examples, i.e., 500 or less. Furthermore, if

we look at the decision boundaries and their associated performances at train and test time, we

can see that LGBM is prone to over�t the training data compared to our approach, showing

a drastic drop in performance between learning and testing. The learned decision boundaries

are also smoother with GBRRF2 than with LGBM. These experiments show the advantage

of having a non-linear weak learner in a gradient boosting approach.

3.6 Conclusion and perspectives

In this chapter, we take advantages of two machine learning approaches, gradient boosting and

random Fourier features, to derive a novel algorithm that jointly learns a compact representation

78

Chapter 3. Ensemble Learning with Random Fourier Features and Boosting

Figure 3.10: Comparison of LGBM and GBRFF2 on three synthetic datasets in terms of

classi�cation accuracy and decision boundaries (upper part of the �gure) and in terms of per-

formance w.r.t. the number of examples (last row of plots).

and a model based on random features. Building on the recent work by Letarte et al. [2019],

we learn a kernel by approximating it as a weighted sum of RFF [Rahimi and Recht, 2008].

The originality is that we learn such kernels so that the representation and the classi�er are

jointly optimized. We show that we can bene�t from a performance boost in terms of accuracy

and computation time by considering each weak learner as a single trigonometric feature and

learning the random part of the RFF. The experimental study shows the competitiveness of our

method with state-of-the-art boosting and kernel learning methods. In particular, our method

79

3.6. Conclusion and perspectives

is able to learn non-linear decision boundaries which generalize well in the presence of few

labeled examples.

The optimization of the random feature and of the landmark at each iteration can be

computationally expensive when the number of iterations is large. A promising future line

of research to speed-up the learning is to derive other kernel approximations where these two

parameters can be computed with a closed-form solution. Other perspectives regarding the

scalability include the use of standard gradient boosting tricks [Ke et al., 2017] such as sampling

or learning the kernels in parallel.

80

Chapter 4

Representations Learning for

Unsupervised Domain Adaptation

This chapter is based on the following publication

Léo Gautheron, Ievgen Redko and Carole Lartizien. Feature Selection for Unsupervised Do-

main Adaptation using Optimal Transport. In European Conference on Machine Learning &

Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2018, Dublin,

Ireland [Gautheron et al., 2018b].

Abstract

In this chapter, we address the di�cult problem of unsupervised domain adaptation

where the learner does not bene�t from any label of the target domain. We build upon

a recent theoretical analysis of optimal transport in domain adaptation and show that it

can directly suggest a feature selection procedure leveraging the shift between the source

and target domains. We propose a novel algorithm that aims to sort features by their

similarity across the domains, where the order is obtained by analyzing the coupling matrix

representing the solution of the proposed optimal transportation problem. We evaluate

our method on a well-known benchmark dataset and illustrate its capability of selecting

correlated features leading to better classi�cation performances. Furthermore, we show

that the proposed algorithm can be used as a pre-processing step for existing domain

adaptation techniques ensuring an important speed-up in terms of the computational time

while maintaining comparable results. Finally, we validate our algorithm on clinical imaging

databases for computer-aided diagnosis task with promising results.

4.1 Introduction

The majority of well-known machine learning algorithms used in real-world applications are

built upon the common strategy often known as empirical risk minimization, as described in

Chapter 1. This strategy suggests that a classi�er that minimizes the loss over the observed

81

4.1. Introduction

dataset is expected to generalize and thus to perform well on any other example coming from

the same probability distribution. However, this assumption is often violated in practice where

a dataset may be di�erent from new unseen data collected afterwards. For instance, one may

consider a computer aided diagnostic system developed to detect a speci�c disease in patients.

It is quite intuitive to suggest that the data collected on a set of patients at a certain hospital

to build the system will present di�erences with the data collected at another hospital due to

the di�erences in the acquisition process and on the di�erent population of patients. Even if

the system may produce good detection results in the �rst hospital where it was developed, it

might present poor detection performance for the other hospital because of the di�erences in

the data between the two hospitals. In this Chapter, we are interested in this problem where the

training set has enough data to build a model, but where the test set as only a few or even no

labels. In this setting, we must rely on the data from the training set to build a model deployed

on the test set, which may fail on the test because the data are acquired in di�erent conditions

between the two domains. In order to tackle this problem, a learning paradigm called domain

adaptation was proposed by Ben-David et al. [2007].

The main goal of domain adaptation is to provide methodological frameworks and algorithms

that allow to reuse a classi�er learned in one area, usually called source domain, in a di�erent yet

similar area usually called target domain. According to the domain adaptation theory presented

in [Ben-David et al., 2007, 2010] (see also Redko et al. [2019] for a survey), the e�ciency of

a given adaptation algorithm depends on its capacity to reduce the discrepancy between the

probability distributions of the considered source and target datasets and on the existence of a

good hypothesis (or classi�er) that can minimize both source and target error functions. While

�nding this optimal hypothesis is a very di�cult problem, most domain adaptation algorithms

concentrate solely on reducing the discrepancy between two domains based on the observed

examples. To this end, several papers [Uguroglu and Carbonell, 2011, Persello and Bruzzone,

2015, Li et al., 2016, Yin et al., 2017] proposed to solve the domain adaptation problem by

addressing it as a feature selection task. Indeed, for the general adaptation scenario, it is

reasonable to assume that the shift between the source and target domains may be caused by

a changing behavior of a subset of features that characterize the data in both domains. In

this case, identifying these features can help to reduce the discrepancy between the source and

target domains and to allow e�cient adaptation.

In this chapter, we propose to learn a joint representation between the source and target

through the lens of a feature selection algorithm. Dedicated to deal with the for unsupervised

domain adaptation setting, our algorithm allows to rank features based on their similarity across

the source and target domains. Our key underlying idea is to solve the optimal transportation

problem (recalled in Section 1.3.3) between the marginal distributions of features in the two

domains in order to obtain a coupling matrix given by their joint probability distribution. The

goal, then, is to use this coupling matrix to identify the most correlated features by analyzing

the diagonal of the coupling matrix where higher coupling values indicate strong correlations

82

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

between the source and target features. Contrary to the state-of-the-art methods that proceed

by learning a new richer feature representation before identifying the invariant features, our

method performs feature selection directly in the input space. This choice leads to more inter-

pretable results and to a better understanding of the adaptation phenomenon as transformed

features cannot directly point out to those descriptors that vary between the two domains. Fur-

thermore, the shifted features identi�ed by our method can be eliminated in order to speed-up

domain adaptation algorithms whose running time often inherently depends on the dimension-

ality of the input data. This latter point is quite important as domain adaptation algorithms

are often deployed for high-dimensional data arising from computer vision applications.

Despite its advantages, our method does not aim to outperform the state-of-the-art clas-

si�cation results obtained by powerful feature transformation domain adaptation methods as

most of them use a very rich class of mappings to �nd a new data representation. To this

end, the foremost goal of this chapter is to show that the proposed feature selection method is

not a competitor of the state-of-the-art algorithms but is a complementary tool that provides

important bene�ts both in terms of computational e�ciency and better understanding of data.

All the results presented in our chapter are given in order to illustrate this rather than its

superiority in terms of classi�cation accuracy.

Organization of the chapter. In Section 4.2 we present a short state-of-the-art on feature

selection methods in domain adaptation. Section 4.3 is devoted to the introduction of basic

elements related to the optimal transportation theory that are used later. In Section 4.4, we

show how a theoretical analysis of domain adaptation with optimal transport can be used

to derive a new adaptation algorithm based on feature selection. Based on this, we describe

the proposed method and the details of its algorithmic implementation. Section 4.5 presents

experimental evaluations of the proposed method on both a benchmark computer vision dataset

and a clinical imaging database for computer-aided diagnosis task. Section 4.6 summarizes our

chapter by outlining its main contributions and giving the possible future perspectives of this

work.

4.2 Related work

As classical feature selection methods [Guyon and Elissee�, 2003] are not designed to work

well under the assumption of distribution's shift, several methods were speci�cally proposed

in the literature for feature selection in the context of domain adaptation. For instance, in

[Li et al., 2016], the authors search a latent low-dimensional subspace for two domains by

jointly preserving the data structure and by selecting a subset of the latent features through

a row-sparsity inducing regularization. While being quite e�ective in terms of classi�cation

results, this method, however, has two important drawbacks. First, it does not identify the

original features that contribute to e�cient adaptation but rather learns their embedding where

the distributions' discrepancy is minimized. Second, its optimization procedure makes use of

83

4.3. Preliminary knowledge

eigenvalue decomposition which has a high computational cost in large-scale applications. In

[Yin et al., 2017], the authors learn a least squares SVM in order to further remove the features

that incur the smallest loss of the classi�cation margin between the classes. Another paper from

Persello and Bruzzone [2015] proposes to solve an optimization problem with two terms: the

�rst one maximizes the relevance between source features and labels using the Hilbert-Schmidt

Independence Criterion while the second term minimizes the shift between the domains using

kernel embeddings. Contrary to our algorithm, the above mentioned methods are supervised as

they both use annotations in the target domain. Finally, the method that is the most similar to

ours is the feature selection algorithm for transfer learning presented by Uguroglu and Carbonell

[2011]. In this latter paper, the authors use a parametric maximummean discrepancy distance in

order to �nd a weight matrix that allows to identify invariant and shifting features in the original

space. As we will show in Section 4.4.1, this method and our contribution are closely related

from a theoretical point of view, even though our method remains much more computationally

attractive.

4.3 Preliminary knowledge

Optimal transport has been already described in Section 1.3.3, and mainly relies on the two

Equations (1.4) and (1.6) recalled bellow.

γ∗ = arg min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F , (4.1)

γ∗ = arg min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F −
1

λ
E(γ), (4.2)

where 〈·,·〉F is the Frobenius dot product, Π(D̂S

X , D̂
T

X) = {γ ∈ Rm×n+ |γ1 = D̂S

X ,γ
>1 = D̂T

X }
is a set of doubly stochastic matrices and C is the cost matrix where Cij is the cost between

xSi ∈ XS and xTj ∈ XT which de�nes the energy needed to move a probability mass from xSi

to xTj . We abbreviate the problem given in Equations (4.1) and (4.2) respectively as OT and

OT2. The use of optimal transport for domain adaptation has been studied for the �rst time

by Courty et al. [2014]. In this work, the authors present a new variant of optimal transport

(abbreviated OT3) based on Equation (4.2) by adding a class regularization ` 1
2
,1:

γ∗ = arg min
γ∈Π(D̂S

X ,D̂
T
X)

〈γ,C〉F −
1

λ
E(γ) + ηΩ(γ), (4.3)

where the Ω(γ) =
∑

j

∑
l ‖γIlj‖

1/2
1 term prevents the source instances with di�erent labels

from being transported to the same target instance. γIlj is a vector which is a subset of the jth

column of γ and where the indexes of the selected rows are given in Il which lists the indexes

of the examples in XS with a label equal to l in Y S , and j goes through the indexes of the

examples in XT .

84

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

Figure 4.1: Comparison of the 3 variants of optimal transport: OT on the left, OT2 in the

middle (λ = 1), OT3 on the right (λ = 1, η = 1). First row shows γ∗ with the higher coupling

values seen as darkest blue. The second row shows the source and target points composed of 3

classes in 3 colors. The coupling between them are shown as segments.

Using the optimal coupling matrix γ∗ found with Equations (4.1), (4.2) or (4.3), the authors

propose to transport the source examples by solving for each of them:

xSai = arg min
x∈Rd

n∑

j=1

γ∗ijc(x,x
T
j). (4.4)

In the case of the squared Euclidean distance, the closed form solution of this problem can be

written as [Courty et al., 2014]:

XSa = diag
(

(γ∗1)−1
)
γ∗XT . (4.5)

When D̂S

X and D̂T

X are uniform (in practice, this is always the case for us), Equation (4.5) is

simpli�ed to

XSa = mγ∗XT . (4.6)

With this expression, each source instance is represented as the weighted barycenter of the

target instances with which it has the highest values in γ∗.

We give a graphical comparison of the OT, OT2 and OT3 algorithms in Figure 4.1. We see

that the basic OT associates one target instance to one source instance while with OT2 each

source point's mass is divided and transported to its closest target points. By adding the class

regularization OT3, we prevent the algorithm from transporting the mass of source instances

of di�erent classes to the same target instance.

85

4.4. Proposed approach

4.4 Proposed approach

In this section, we present our main contribution. We start by formally introducing a theoretical

result that we use to derive our algorithm.

4.4.1 Theoretical insight

The use of optimal transport in domain adaptation was �rst theoretically analyzed by Redko

et al. [2017]. In this paper, the authors proved that under some mild assumptions imposed on

the form of the transport cost function, and given any convex loss h ∈ H with h : X → [0, 1],

the true target risk RT (h) and the true source risk RS(h) can be related through the following

inequality

RT (h) ≤ RS(h) +W (DS ,DT) + λ, (4.7)

where λ is the combined error of the ideal hypothesis h∗ that minimizes RS(h) + RT (h) and

W is the Wasserstein distance computed using the optimal transport plan as de�ned in Equa-

tion (1.5). This result shows that in order to upper-bound the error of a classi�er in the target

domain, one has to minimize the source error function and the discrepancy between the source

and target distributions given by the Wasserstein distance.

Below, we use this result as a starting point in order to develop our approach. To this end,

we �rst notice that the source and target domains can be equivalently seen as 2-dimensional

product spaces X S × FS and X T × FT , where X S (resp. X T) and FS (resp. FT) denote the
source (resp. target) instance and feature spaces. In this case, the probability distributions DS

and DT are also product measures supported on X S × FS and X T × FT and can be written

as DSX × DSF and DTX × DTF , respectively. Using the results proved by [Talagrand, 1995] for

concentration of measures in product spaces, we can upper bound the Wasserstein distance

between DS and DT as follows:

W (DS ,DT) ≤W (DSF ,DTF) +

∫

FS

W (DSX |DSF ,DTX)dDSF .

In this inequality, the measures DSF (resp. DTF) and DSX (resp. DTX) can be used interchangeably.
Now, by plugging it into the learning bound of Equation (4.7), we obtain

RT (h) ≤ RS(h) +W (DSF ,DTF) +

∫

FS

W (DSX |DSF ,DTX)dDSF + λ.

This inequality shows that when one considers probability measures over a product space of

instances and features spaces, a successful adaptation necessitates the minimization of the dis-

crepancy between the feature distributions DSF , DTF as well as that of the instance distributions

DSX , DTX conditionally on the source features measure DSF . Thus, it naturally leads to a two-

stage procedure where the �rst goal is to reduce the discrepancy between the feature sets of the

two domains while the second is to apply an appropriate domain adaptation algorithm between

their instances described by an optimal set of features obtained at the �rst stage.

86

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

In what follows, we introduce our method based on the idea of �nding a coupling that

aligns the distributions of features across the source and target domains. As suggested by the

obtained bound, the selected features minimizing theW (DSF ,DTF) can be used then by a domain

adaptation algorithm applied to the source and target examples of a reduced dimensionality.

The Wasserstein distance here can be replaced, in practice, by the popular maximum mean

discrepancy distance [Gretton et al., 2012] often used in domain adaptation as both of them

belong to a larger class of integral probability metrics de�ned over di�erent functional classes.

In this case, the feature selection algorithm proposed by Uguroglu and Carbonell [2011]1 also

indirectly minimizes the discrepancy between the marginals DSF and DTF . Nevertheless, the

computational complexity of the proposed optimization procedure is polynomial thus making

its use prohibitive in real-world applications.

4.4.2 Problem setup

Until now the optimal transport was used in order to align the empirical measures D̂S

X and

D̂T

X de�ned based on the observable datasets XS ∈ Rm×d and XT ∈ Rn×d. The interpolation
step performed using Equation (4.6) aims at re-weighting the source instances so that their

distribution matches the one of the target examples. The geometric interpretation is that, to

minimize the divergence between DS and DT , we can associate the source examples with the

target examples based on the highest coupling values.

As mentioned in the previous section, the idea of our method is to go from the example

space to the feature space. To this end, we now consider that XS and XT are drawn from

2-dimensional product spaces X S×FS and X T ×FT , where X S ,X T ⊆ Rd while FS ⊆ Rm and

FT ⊆ Rn. In this case, we can de�ne two empirical probability measures

D̂S

F =
1

d

d∑

i=1

δfSi
, and D̂T

F =
1

d

d∑

i=1

δfTi
,

based on the source and target features {fSi }di=1 ∈ FS , {fTi }di=1 ∈ FT , respectively. Our

goal now is to transport D̂S

F to D̂T

F by solving the entropy regularized optimal transportation

problem given as follows:

γ∗f = arg min
γf∈Π(D̂S

F ,D̂
T
F)

〈γf ,Cf 〉F −
1

λ
E
(
γf
)
, (4.8)

where Cfij = ‖fSi − fTj ‖22.
In what follows, we show that the solution of this problem can lead to a principally di�erent

domain adaptation method that is based on a feature selection approach rather than on the

original instance re-weighting one.

1Unfortunately, we were unable to use this method as a baseline in our experiments due to the lack of

implementation details in their paper and the absence of a publicly available code.

87

4.4. Proposed approach

4.4.3 Finding a shared feature representation

At this point, one may notice that in order to apply optimal transport between D̂T

F and D̂T

F ,

it is necessary to calculate the cost matrix Cf which is possible only if the numbers of source

and target instances are equal. Furthermore, as source and target features are described by

supposedly shifted distributions, aligning them directly using any arbitrary sets of instances

may not be appropriate due to the di�erences in the representation spaces that may exist

across the two domains. In order to tackle both of these problems, we propose to �nd a

matching between i, the example index ∀i = {1, . . . ,m} describing the source features and j,

the example index ∀j = {1, . . . , n} describing the target features based on the original optimal

transportation problem. More formally, based on the solution γ∗ of the optimization problem

given by Equation (4.1), we de�ne the optimal subset of target instances XTu as:

XTu = {xj ∈XT | j = arg max γ∗ij , i ∈ {1, . . . ,m}}. (4.9)

This particular choice of the algorithmOT rather than its regularized versions (OT2 andOT3)

is explained by the fact that we are interested in a sparse matching between the two sets, i.e.,

the one limiting the spread of mass. We will give an empirical justi�cation of using the OT

algorithm for instance selection in the experimental section.

m

d

Input: XS

XS
00 XS

01 XS
02

XS
10 XS

11 XS
12

XS
20 XS

21 XS
22

XS
30 XS

31 XS
32

XS
40 XS

41 XS
42

n

d

Input: XT

XT
02

XT
01

XT
00

XT
12

XT
11

XT
10

XT
22

XT
21

XT
20

XT
32

XT
31

XT
30

XT
42

XT
41

XT
40

XT
52

XT
51

XT
50

XT
62

XT
61

XT
60

XT
72

XT
71

XT
70

γ∗ ← OT(XS,XT)

0

0.125

0

0

0

0

0

0

0.05

0.075

0

0

0.125

0

0

0

0

0

0.125

0

0

0.05

0.075

0

0

0.075

0.025

0

0.025

0

0.125

0

0

0

0

0

0

0

0

0.125

m

d

Output: XTu

XT
70 XT

71 XT
72

XT
30 XT

31 XT
32

XT
20 XT

21 XT
22

XT
00 XT

01 XT
02

XT
60 XT

61 XT
62

Figure 4.2: Illustration of the example selection in the target domain described in Algorithm

4.1. For each source example, select the target example with which it has the highest coupling

value.

This process, summarized in Algorithm 4.12and illustrated in Figure 4.2, is a required

2where zscore(X) is de�ned as follows: for each column of X, one subtracts its mean and divides by its

88

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

Algorithm 4.1: Example selection in target domain

Inputs : XS ∈ Rm×d,
XT ∈ Rn×d

Output : XTu ∈ Rm×d - optimal subset of target instances

XS=zscore(XS); XT=zscore(XT)

γ∗ ← OT(XS,XT)

XTu ← {xj ∈XT|j = argmax
i∈{1,...,m}

γ∗ij}

Algorithm 4.2: Feature ranking for domain adaptation

Inputs : XS ∈ Rm×d,
XT ∈ Rn×d

Output : List F of d most similar features from XS and XT

XTu ← Algorithm4.1(XS ,XT)

XS>=zscore(XS>); XTu>=zscore(XTu>)

γ∗f = OT2(XS>,XTu>, λ = 1)

F= argSortDesc({γ∗fii |i ∈ {1, . . . , d}})

preliminary step consisting in �nding which examples will be used to describe the features in

the source and target domains. The selection stage used to obtain Tu relies on the intrinsic

capacity of the coupling matrix to describe the probability of associating each source instance

with each target instance based on their similarity.

4.4.4 Feature selection

Now, we letXT = XTu meaning that in Equation (4.8) the target features are described by the

set XTu of target examples. If n > m, we invert the roles of XS and XT in Algorithm 4.1 and

instead let XS = XSu. Furthermore, in a highly imbalanced classi�cation setting, or in the

presence of a large number of instances, we advise to �rst select a subset of source instances by

balancing the examples according to their classes before applying Algorithm 4.1. This selection

allows to capture a class information from the source domain without needing labeled examples

from the target domain, and thus is still unsupervised w.r.t. the target domain.

We now solve the problem given in Equation (4.8) and obtain the optimal coupling γ∗f∈Rd×d.
Similar to what we have done at the example selection step, we analyze the values of the coupling

matrix in order to determine the less shifted features across the two domains. The important

di�erence, however, is that we sort the features by analyzing only the diagonal of the coupling

matrix. This peculiarity is explained by the fact that the values on the diagonal correspond to

the similarities between the same features in the shared source and target representation space.

By transporting the features with the OT2 algorithm, each source feature is transported to its

standard deviation.

89

4.4. Proposed approach

nearest target features. Because of this, if a given feature is shifted across the two domains, then

its mass will be uniformly spread on the target features so that its mass on the corresponding

target feature will be rather small. Similarly, if a feature is similar between the source and

target domains, then the majority of the mass of this source feature should be found on its

corresponding target feature.

Based on this idea, we propose to construct the ordered list of features F , where the feature

number i in F is the one having the ith highest coupling value on the diagonal of the coupling

matrix, i.e.,

F = arg sort({γ∗fii | i ∈ {1, . . . , d}). (4.10)

By varying the parameter λ in OT2, we can spread the mass of a source feature more or less

uniformly when transporting it to the target features. Even though one may obtain di�erent

coupling values for di�erent values of λ, it does not a�ect the order of features returned in F

allowing us to �x λ = 1 in all empirical evaluations to avoid hyper-parameter tuning.

d

m

Input: XS>

XS
0,0 XS

1,0 XS
2,0 XS

3,0 XS
4,0

XS
0,1 XS

1,1 XS
2,1 XS

3,1 XS
4,1

XS
0,2 XS

1,2 XS
2,2 XS

3,2 XS
4,2

m

d

Input: XTu>

XT
7,0 XT

7,1 XT
7,2

XT
3,0 XT

3,1 XT
3,2

XT
2,0 XT

2,1 XT
2,2

XT
0,0 XT

0,1 XT
0,2

XT
6,0 XT

6,1 XT
6,2

γ∗f = OT2(XS>,XTu>, λ = 1)

0.110

0.085

0.138

0.096

0.144

0.093

0.127

0.104

0.102

d

Output: F

1 0 2

Figure 4.3: Illustration of our feature ranking for domain adaptation described in Algorithm

4.2. It consists in sorting the features by descending order of their coupling value across the two

domains.

The pseudo-code given in Algorithm 4.2 and illustrated in Figure 4.3 summarizes our feature

selection method. After having obtained the ordered list of features F , we can use its d∗ < d

�rst features for the classi�cation problem at hand. It is worth noting that the proposed method

can be applied as a pre-processing before using any domain adaptation algorithm to discard the

features that are completely di�erent across the two domains. On the other hand, it can also

90

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

be applied in the �no adaptation setting� to select the common features between the training

and test data.

4.5 Experimental evaluation

In this section, we provide an empirical study of the proposed algorithm based on three domain

adaptation benchmarks which are O�ce/Caltech [Saenko et al., 2010, Gopalan et al., 2011],

MNIST/USPS [Courty et al., 2017] and Amazon review [Germain et al., 2020], and on a clinical

imaging database [Niaf et al., 2012] for computer-aided diagnostic task. The optimal transport

algorithms OT used in Algorithm 4.1, OT2 used in Algorithm 4.2 and OT3 are available in

the Python POT library3, making our method straightforward to implement. Nevertheless, we

make the Python implementation and the data used in our experiments (except the medical

dataset for privacy reasons) publicly available4 for the sake of reproducibility.

4.5.1 Experiments on visual domain adaptation data

The main assumption of our method is that not all features are equally useful for adapting

a classi�er from the source domain to the target one. This is especially the case for datasets

described by features calculated using the Bag-of-Words (BoW) methods, such as, for instance,

the features of the O�ce [Saenko et al., 2010]/Caltech [Gopalan et al., 2011] dataset.

O�ce/Caltech dataset For this dataset, the classi�cation task is to assign an image to a

class based on its content. It is composed of 4 domains: Amazon (A), Caltech (C), Webcam

(W) and DSLR (D) containing m = 958, m = 1123, m = 295 and m = 157 images, respectively

belonging each to one of c = 10 di�erent classes (see Figure 4.4 for examples of images that

can be found in the four domains). These domains form 12 pairs of domain adaptation sub-

problems.

Figure 4.4: Examples of images from the 10 classes in the four domains of the O�ce/Caltech

dataset.

In what follows, we use three di�erent types of features: (1) SURF features [Bay et al., 2006]

of size d = 800 constructed using the BoW method; (2) Ca�eNet features [Jia et al., 2014] that

3https://github.com/rflamary/POT
4https://leogautheron.github.io

91

https://github.com/rflamary/POT
https://leogautheron.github.io

4.5. Experimental evaluation

Table 4.1: Classi�cation accuracies in % and standard deviation with no adaptation for SURF,

Ca�etNet and GoogleNet features. Here,↘ X (resp. ↗) indicates the use of the �rst X features

sorted by decreasing (resp. ascending) similarity computed with Algorithm 4.2.

SURF features Ca�eNet features GoogleNet features

DA pairs

A→C

A→D

A→W

C→A

C→D

C→W

D→A

D→C

D→W

W→A

W→C

W→D

Mean

↘400 ↗400 800

25.4±2.4 15.4±1.5 23.1±1.6
24.5±2.9 16.2±3.0 21.9±2.4
27.5±2.2 16.2±2.6 26.0±2.1
24.8±1.4 14.1±2.2 21.2±2.4
25.5±3.7 15.5±2.8 22.8±3.6
23.3±3.0 13.9±2.2 20.6±3.5
25.7±2.0 15.8±2.9 26.7±1.7
23.8±1.9 16.0±2.1 24.8±1.5
53.6±3.5 22.1±3.4 53.3±2.7
23.7±1.9 15.6±1.9 23.1±1.5
18.1±1.7 12.0±1.6 19.5±1.0
63.4±3.6 21.7±3.4 52.4±2.6

29.9±2.5 16.2±2.5 27.9±2.2

↘ 512 ↗ 512 4096

74.9±2.0 29.8±2.4 71.7±3.5
78.8±3.5 20.4±2.8 76.0±3.5
77.6±1.9 20.2±3.5 66.0±4.6
83.7±1.8 38.7±4.5 82.1±2.2
76.2±3.6 24.1±3.4 74.2±4.9
75.4±3.5 20.3±3.2 70.3±5.3
75.4±2.1 20.8±3.8 68.7±2.9
65.0±2.6 21.5±2.5 66.6±1.8
92.6±2.0 32.8±5.1 91.9±1.9
81.5±1.2 18.8±2.4 68.3±3.0
72.2±1.1 23.4±2.1 61.2±2.1
96.5±1.5 49.7±3.2 96.3±1.0

79.2±2.2 26.7±3.3 74.4±3.0

↘256 ↗256 1024

85.7±1.2 64.7±2.4 84.6±1.1
86.7±2.4 68.6±4.9 88.4±2.5
85.4±3.1 51.8±5.9 83.5±2.8
90.4±1.2 74.5±3.4 90.6±1.7
88.3±2.7 68.5±4.3 88.6±2.7
86.2±2.7 54.3±4.6 83.3±2.4
84.2±2.0 46.4±4.2 82.3±1.6
80.5±1.7 46.9±2.8 77.8±2.5
96.5±1.1 81.5±3.4 97.4±0.8
89.7±0.8 55.8±2.5 87.0±1.2
83.7±1.1 49.9±2.5 79.4±1.2
98.9±0.8 93.4±1.8 99.2±0.5

88.0±1.7 63.0±3.5 86.8±1.8

are obtained by feeding the images to a pre-trained neural network based on the prominent

AlexNet [Krizhevsky et al., 2012]; (3) GoogleNet features [Szegedy et al., 2015] obtained in the

way identical to Ca�eNet features using GoogleNet network. In order to obtain the Ca�eNet

and GoogleNet features, these two neural networks were �rst trained on ImageNet, a large

dataset containing millions of images distributed across c = 1000 di�erent classes. We removed

their classi�cation layer of size 1000 to use the output of the previous layer, giving d = 4096

features for Ca�eNet and d = 1024 features for GoogleNet. We downloaded the pre-trained

networks from the Ca�e website [Jia et al., 2014] before using them to extract the features from

our images, and this without doing any �ne-tuning or any other modi�cation of the networks

apart from removing their last layer.

The experimental protocol used to evaluate the proposed method is based on the one pre-

sented by Courty et al. [2014]. For each adaptation (source, target) pair S → T , we randomly

sample 20 images per class (8 if S is D). This gives us 200 images (resp. 80) for S. All images

from T are considered. We then apply Algorithm 4.2 with XS and XT to obtain the ordered

list of features F . For an increasing number of features d, we use the �rst d features of F to,

�rst adapt S to T , and then use a 1-nearest neighbor classi�er with the source adapted data as

training set to compute the classi�cation accuracy on the target data. We repeat this 19 times

and report mean accuracies for each pair.

Classi�cation results The classi�cation results for the three types of features are given in

Table 4.1. From this table, we see that by selecting 512 Ca�eNet features having the highest

similarity between the source and target domains, we obtain a mean accuracy of 79.2% across

the 12 adaptation pairs compared to 74.4% accuracy obtained using all 4096 features. This

92

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

200 400 600 800
Number of features selected

15

20

25

30
A

cc
ur

ac
y

SURF

Ascending Descending Random All features

1024 2048 3072 4096
Number of features selected

30

40

50

60

70

80
CaffeNet

256 512 768 1024
Number of features selected

30

40

50

60

70

80

90
GoogleNet

Figure 4.5: Mean accuracies over the 12 DA pairs (from Table 4.1) without using an adaptation

algorithm as a function of the number of features selected. Our method corresponds to the

`Descending' curve consisting in selecting the features ordered by decreasing similarity between

source and target domains.

Table 4.2: Mean accuracies over the 12 DA pairs without applying adaptation using 3 di�erent

type of features: SURF (d=800), Ca�eNet (d=4096) and GoogleNet (d=1024).

#features SURF Ca�eNet GoogleNet

↘ d/32 21.3±2.4 74.4±2.9 80.0±2.6
↗ d/32 12.7±2.0 20.6±3.0 24.2±3.3

↘ d/8 25.7±2.6 79.2±2.2 86.9±1.8
↗ d/8 14.0±2.2 26.7±3.3 48.1±3.9

↘ d/2 29.9±2.5 80.0±2.2 88.1±1.8
↗ d/2 16.2±2.5 51.3±4.4 77.2±2.6

d 27.9±2.2 74.4±3.0 86.8±1.8

behaviour is further con�rmed in Figure 4.5 (middle) that illustrates the obtained classi�cation

results for a number of features varying between 128 and 4096. We note that our method

outperforms random feature selection while selecting the least similar features gives worse per-

formances in all cases. We observe the same behavior for the SURF and GoogleNet features:

our method gives better or almost identical performances on almost all domain adaptation

pairs with signi�cantly less features used. This con�rms our claim about the e�ciency of our

proposed method for domain adaptation.

The general comparison of Ca�eNet, SURF and GoogleNet features is given in Table 4.2. As

before, we observe an important di�erence between taking the �rst most similar and dissimilar

features across the two domains and better performances are obtained by taking a reduced

number of features. Another noticeable point is that the performances of the SURF features

93

4.5. Experimental evaluation

Table 4.3: The arrays give the recognition accuracies in % and standard deviation with adapta-

tion using the OT3 algorithm for SURF, Ca�etNet and GoogleNet features.

SURF features Ca�eNet features GoogleNet features

DA pairs

A→C

A→D

A→W

C→A

C→D

C→W

D→A

D→C

D→W

W→A

W→C

W→D

Mean

↘400 ↗400 800

27.2±1.6 28.5±2.2 30.3±1.5
39.0±4.3 32.9±3.4 40.9±2.6
34.1±2.4 30.5±2.9 34.4±2.0
34.2±2.4 30.9±3.7 36.9±2.6
43.4±5.5 38.3±4.0 44.2±5.0
38.3±4.8 30.7±4.2 37.9±5.3
27.1±2.4 24.9±2.7 28.8±1.7
27.8±1.3 26.9±2.6 28.9±1.4
66.5±2.9 54.7±2.9 68.6±2.1
35.6±1.0 23.6±3.4 37.5±0.8
31.5±1.2 29.3±2.4 34.3±1.1
71.8±2.0 57.9±1.4 71.4±1.7

39.7±2.6 34.1±3.0 41.2±2.3

↘2048 ↗ 2048 4096

82.6±1.1 73.0±2.0 82.7±0.7
91.3±1.5 85.6±3.0 93.3±1.3
94.8±1.0 74.1±4.1 92.1±1.1
89.0±1.4 84.1±1.7 89.2±0.8
90.4±1.2 89.0±2.3 93.3±1.2
94.0±1.3 75.7±3.6 90.5±1.9
86.0±1.8 75.5±4.0 86.6±1.4
77.7±3.4 73.6±2.8 80.0±3.0
98.1±0.7 92.4±1.3 96.6±0.6
87.7±1.2 71.1±1.9 86.1±1.9
78.8±1.8 67.0±1.9 78.1±1.8
95.4±1.2 96.7±1.0 97.3±0.7

88.8±1.5 79.8±2.5 88.8±1.4

↘512 ↗512 1024

89.5±0.7 82.5±1.8 89.7±0.8
91.4±0.9 94.8±1.6 93.5±0.4
96.6±1.3 88.6±3.0 95.8±1.1
92.5±1.0 89.3±1.7 93.8±0.5
91.8±0.8 94.6±1.5 93.9±0.9
96.0±1.1 90.2±2.4 96.8±0.7
90.2±1.5 82.9±3.1 91.1±1.1
86.3±1.6 81.5±2.0 89.1±0.8
98.2±0.8 96.0±0.9 97.9±0.6
92.8±0.4 85.5±2.1 92.9±0.3
89.4±1.4 82.5±1.5 90.3±1.0
95.7±1.1 99.6±0.9 97.2±1.2

92.5±1.0 89.0±1.9 93.5±0.8

200 400 600 800
Number of features selected

15

20

25

30

35

40

A
cc

ur
ac

y

SURF

Ascending Descending Random All features

1024 2048 3072 4096
Number of features selected

30

40

50

60

70

80

CaffeNet

256 512 768 1024
Number of features selected

30

40

50

60

70

80

90

GoogleNet

Figure 4.6: Mean accuracies over the 12 DA pairs using the OT3 adaptation algorithm as a

function of the number of features selected.

are far behind the Ca�eNet features, the latter being slightly worse than GoogleNet features.

Even by taking a small number (1024/32 = 32) of GoogleNet features, we obtain a mean

accuracy of 80.0% which is at least as good as all the other con�gurations using SURF and

Ca�eNet features. To summarize, the presented results clearly show that the order of features

returned by our method is directly correlated with their adaptation capacities.

We saw in the previous experiment that our method works for di�erent types of features

without applying any adaptation algorithm. We present in Table 4.3 and Figure 4.6 the impact

of using an adaptation algorithm that takes as input a reduced set of features returned by our

method. Several important conclusions can be made based on these results. First, we notice

that our algorithm does not improve the classi�cation results compared to the performance of

the OT3 algorithm with a randomly selected subset of the Ca�eNet and GoogleNet features.

94

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

Table 4.4: Mean recognition accuracies in %, standard deviation and sum of total computational

time (over the 12 DA pairs and 19 iterations) in seconds for di�erent adaptation algorithms

using the Ca�eNet features.

Method ↘512 ↘1024 ↘2048 4096

No adapt.

CORAL

SA

TCA

OT3

79.2±2.2 0.00s

80.5±1.8 110.43s

81.8±2.0 13.25s

83.5±2.2 221.08s

84.2±2.4 19.50s

79.9±2.3 0.00s

80.8±1.9 587.69s

82.5±1.8 32.09s

85.0±1.9 223.62s

86.7±1.9 31.76s

80.0±2.2 0.00s

80.4±1.7 3996.20s

82.9±1.7 66.71s

85.8±1.8 229.48s

88.8±1.5 54.07s

74.4±3.0 0.00s

80.1±1.7 29930.39s

83.0±1.7 169.71s

85.9±1.7 242.71s

88.8±1.4 97.47s

As explained in the introduction, OT3 �nds a new latent projection of the source data in order

to leverage the shift between the two domains. In this case, eliminating shifted features does

not directly contribute to an improved classi�cation performance as OT3 algorithm can handle

the reduction of shift between the two domains pretty well on its own. However, we can also

observe that the performance of OT3 with a reduced �Ascending� set of features reaches its

maximal value sooner than when no adaptation is performed in (4.5). This is explained by

the fact that OT3 successfully adapts the most shifted features. Moreover, it is important to

notice that with or without adaptation, the curve �Ascending� is far below the other curves.

This means that the features identi�ed by our proposed method as most dissimilar between the

two domains are harmful on the performances of the �nal classi�er if used alone.

It is quite intuitive to assume that by selecting a subset of features, we decrease the com-

putational complexity of the adaptation and classi�cation algorithms that are used later. To

support this claim, we present below an additional study of the impact of reducing the number

of features on both the computational time and classi�cation performance for several adaptation

algorithms below.

Running time speed-up For this experiment, we evaluated the gain in computational time

of di�erent adaptation algorithms as a function of the number of features selected by our method.

To this end, we compared the �no adaptation� setting with four state-of-the-art adaptation

algorithms: CORAL [Sun et al., 2016], SA [Fernando et al., 2013], TCA [Pan et al., 2010]

and OT3 [Courty et al., 2014]. We �xed the subspace dimensions of SA and TCA to 80 (or to

the number of features selected when smaller than 80) while for OT3 we set λ = 2 and η = 1.

Even if from Table 4.2 we obtained the best performances with GoogleNet features, we select

for this experiment the Ca�eNet features to better see the computational gain because they

have the largest dimensionality (4096).

The results of this evaluation are presented in Table 4.4. From these results, we see that

by selecting 2048 out of 4096 most similar features, we are able to obtain slightly better clas-

si�cation performances for all adaptation methods compared to the case when all features are

used. Moreover, the computation time required by the algorithms greatly decreases. When only

95

4.5. Experimental evaluation

512 features are used, an even more impressive speed up is obtained with a very slight drop in

performance for the last three methods. These results con�rm that our method is capable of

�nding subsets of similar features between source and target domains that can give compara-

ble and sometimes even improved classi�cation performances while decreasing considerably the

computation time required for adaptation methods to converge.

Comparison of di�erent instance selection strategies As explained in Section 4.4.3, our

method requires to select a set of examples that describe the features in the source and target

domains before computing the similarity between them. For our method, we propose to select

these examples using the OT algorithm between the source and target examples. In Table 4.5,

we evaluate two other example selection methods on the O�ce/Caltech dataset: the �rst one

is based on the random selection of the examples while the second uses a 1-Nearest-Neighbor

(1NN) algorithm instead of the OT method. The computation of the features' rank is then

done in the same way as that of presented in Algorithm 4.2.

Table 4.5: Mean accuracies over the 12 adaptation pairs without applying adaptation on Caf-

feNet features obtained using di�erent example selection methods. Our proposed selection method

is OT.

#features Random OT 1NN

↘128 42.7±6.0 74.6±3.4 72.8±2.9
↗128 43.9±5.6 20.8±2.7 22.3±3.1

↘512 68.1±4.5 79.3±2.6 79.1±2.7
↗512 60.8±5.3 27.1±3.3 27.6±3.4

↘2048 75.9±3.2 80.1±2.2 79.6±2.7
↗2048 68.9±4.8 52.3±4.2 50.4±4.4

4096 75.2±3.0 75.2±3.0 75.2±3.0

From this table, we can see that a random selection of instances gives poor results for dif-

ferent numbers of features considered in our study. On the other hand, we observe that both

OT and the 1NN algorithm provide close performances in identifying similar and dissimilar

features with a slight superiority of the optimal transport based method. In order to discrim-

inate between the two, we demonstrate in Figure 4.7 the pitfalls of the 1NN based selection

that can occur when the vast majority of source points are associated with a handful of target

instances. We can see that for the two considered toy datasets, the selection of target instances

based on the 1NN algorithm leads to a distribution that does not re�ect the true distribu-

tion of the target data. If we would have selected points in the target domain randomly, we

would still have the same target distribution, but as we have shown previously in Table 4.5,

the random selection gives worse classi�cation performances. On the other hand, the proposed

96

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

Source Target Target Selection OT Target selection 1NN

Figure 4.7: Two toy examples where we generated a source and a target distribution (left) before

using the example selection procedure in the target domain using the OT algorithm (in the

middle) and the 1NN selection (on the right).

strategy for the selection of target examples through the OT algorithm allows to obtain both

good classi�cation performances and to preserve the target data distribution. Recall that he

computation of the OT has a squared space complexity compared to the linear complexity of

the 1NN selection. Consequently, the use of the example selection with the 1NN algorithm can

present a good alternative for large-scale machine learning problems.

4.5.2 Experiments on digit recognition and textual product reviews

Description of the digit recognition datasets We use in this experiment two digits

datasets: MNIST and USPS, where the task is to assign to each image the digit (among

the c = 10 labels) drawn on the image. MNIST is composed of m = 70000 gray-scale images

of size 28 by 28 giving a total of d = 784 features taking their value between 0 (white pixel)

and 255 (black pixel). USPS has m = 9298 gray-scale images of size 16 by 16 giving d = 256

features of values between −1 (white pixel) and +1 (black pixel). As pre-processing, we resize

the MNIST images from 28 by 28 pixels to 16 by 16 pixels, and we normalize the pixel values

in both datasets to be between 0 (white pixel) and +1 (black pixel). We provide in Figure

4.8 some example of images from the MNIST and USPS datasets after pre-processing. Both

datasets are well balanced and each class represents between 8% and 16% of all the examples

in the dataset. These two datasets form 2 pairs of domain adaptation sub-problems.

97

4.5. Experimental evaluation

MNIST USPS

Figure 4.8: Examples of images for the 10 digit classes in the MNIST and USPS datasets.

Description of the textual product review dataset The amazon review dataset contains

reviews of four categories of products: m = 6465 reviews of books, m = 5586 reviews of DVDs,

m = 7681 reviews of electronic andm = 7945 reviews of kitchens. We use the pre-processed data

provided by Germain et al. [2020] where the task is to distinguish between positive and negative

reviews. The datasets are all balanced with approximately as many positive as negative reviews.

The pre-processing of the data consists in a conversion from the original textual representation

to a numerical one. To this aim, Germain et al. [2020] �rst established a list of all possible

uni-grams (one character) and bi-grams (two adjacent characters) present in all reviews. Only

the d = 5000 more common uni-grams and bi-grams among all reviews are kept, and each

review is described by the number of occurrences of each gram inside the review. These four

datasets form 12 domain adaptation pairs.

Classi�cation results We report the classi�cation results of our method using a 3NN algo-

rithm for the digit recognition benchmark, and a linear SVM for the Amazon review benchmark.

The mean results over all the domain adaptation pairs are depicted in Figure 4.9 and the detailed

results for each domain adaptation pair are described in Table 4.6. For the digit recognition

task, our method allows to improve the performances by selecting a subset of features when

learning from USPS and testing on MNIST while showing a slight loss of performances from

MNIST to USPS. For the amazon review problem, we do not see any improvement of the per-

formances by selecting the most similar features compared to using all the features. However,

in both benchmarks we observe the same behavior as with the previous O�ce/Caltech bench-

mark: selecting the most dissimilar features between the two domains (curves �Ascending�) gives

much worst performances than selecting randomly a subset of features. This con�rms that our

method can successfully identify dissimilar features between the two domains that may degrade

the performances of the �nal classi�er.

98

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

8 32 64 96 128 160 192 224 256
Number of features selected

10

20

30

40

50

60

A
cc

ur
ac

y

Ascending

Descending

Random

All features

MNIST ↔ USPS

100 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of features selected

55

60

65

70

75

80

Ascending

Descending

Random

All features

Amazon review

Figure 4.9: Mean accuracies over the domain adaptation pairs on the digit recognition and

amazon review datasets.

Table 4.6: Recognition accuracies for the digit recognition benchmark (upper part of the array)

and the Amazon review benchmark (bottom part of the array).

DA pairs ↘ 64 ↗ 64 256

M→U 67.6 12.8 70.8

U→M 51.1 6.8 31.7

Mean 59.4 9.8 51.2

DA pairs ↘ 2500 ↗ 2500 5000

B→D 79.8 72.5 81.5

B→E 76.2 64.3 76.1

B→K 77.8 65.9 79.2

D→B 80.3 72.4 82.5

D→E 77.8 66.4 78.8

D→K 79.5 66.2 80.1

E→B 73.5 63.4 74.3

E→D 74.2 65.0 75.5

E→K 88.0 74.9 89.1

K→B 74.6 63.9 75.2

K→D 76.6 66.5 77.0

K→E 86.4 75.4 87.5

Mean 78.7 68.1 79.7

99

4.5. Experimental evaluation

Feature T2Haralick featuresindnc

1.5T

3T

Feature T2Haralick featuresdissi

1.5T

3T

Figure 4.10: Example of distribution of 2 features illustrating the shift between the source and

target domains.

4.5.3 Experiments on a medical imaging dataset

We now proceed to the evaluation of our method on a clinical dataset of multi-parametric

magnetic resonance images (mp-MRI) collected to train a computer-aided diagnosis system for

prostate cancer mapping [Niaf et al., 2012, Aljundi et al., 2015]. This system learns a binary

decision model in a multidimensional feature space based on training examples (voxels) from

di�erent classes of interest. This model is then used to generate cancer probability maps.

Data description The considered database consists of 90 mp-MRI exams acquired with

di�erent imaging protocols on two di�erent scanners (49 patients on a 1.5T scanner and 41 on

a 3T scanner), thus producing heterogeneous datasets. Each individual voxel is described by a

binary label (Cancer, Non Cancer) and a set of d = 95 handcrafted features consisting of image

descriptors, texture coe�cients, gradients and other visual characteristics (more details in the

paper from Niaf et al. [2012]). Some of these 95 features have a clear shift between the two

domains, as illustrated in Figure 4.10. The number of available instances in both domains is

shown in Table 4.7. Our goal is to learn a classi�er on annotated 1.5T voxels, representing the

source domain, performing well on 3T voxels, considered as the target domain, without using

labels from the latter one.

Table 4.7: Distribution of the MRI voxels between the Cancer and Non Cancer classes in the

source and target domains.

Class #voxels 1.5T #voxels 3T

Non cancer 363,222 846,556

Cancer 56,126 140,840

Total 419,348 987,396

Evaluation protocol We �rst randomly sample a set S of m = 1500 voxels equiproportion-

ally from the 49 1.5T exams and both classes of interest. Then, we use Algorithm 4.1 on S and

100

Chapter 4. Representations Learning for Unsupervised Domain Adaptation

19 38 57 76 95
Number of features selected

50

55

60

65

70

75

80

85

A
re

a
U

nd
er

R
O

C
C

ur
ve

No adaptation

Ascending Descending Random All features

19 38 57 76 95
Number of features selected

Adaptation: OT3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Feature number

0

10−3

10−2

10−1

100

S
im

ila
ri

ty

Figure 4.11: Performance of our method on the clinical MRI database with no adaptation (top

row, left) and using the OT3 algorithm (top row, right). The log-scaled similarity of features

across the two domains estimated by our algorithm is given in the bottom row. We observe that

our method correctly identi�es the three most shifted features that lead to an important drop in

classi�er's performance.

on T as n = 20000 randomly sampled voxels from the 41 3T exams to obtain Tu. This step is

followed by the adaptation of S to Tu, the training of a linear SVM on Sa and a testing step

on all voxels from the 3T target domain.

We used the area under the ROC Curve (AUC) de�ned in Section 1.1.2 as the diagnostic

performance measure. This comes from the fact that both the source and the target domains

exhibit an important class imbalance with 86% of non-cancer voxels. In this case, the classi-

�cation accuracy used in the previous experiments does not provide a truthful picture of the

classi�er's performance. Our feature selection method is used as a standalone method and in

combination with the OT3 adaptation algorithm. As before, we repeat this process 20 times,

and we report the mean AUC over the 20 iterations.

Obtained results The results for this dataset are shown in Figure 4.11. When all the 95

features are used, we obtain an AUC of 50% without adaptation, corresponding to the worst

possible performance with no distinction between Cancer and Non cancer classes. By applying

our feature selection algorithm (the �Descending� curve) in a standalone manner, we are able

to reach an AUC of 80% with a signi�cant drop in performance when the 3 most dissimilar

101

4.6. Conclusions and perspectives

features are added. On the other hand, using our feature selection algorithm before applying

an adaptation algorithm reduces greatly the number of features needed to achieve comparable

performances. This bene�t presents an important computational gain when high-dimensional

datasets are considered. Finally, we argued that one of the strengths of our method is its ability

to identify the original features causing the shift between the source and target domains. To

this end, we plot in Figure 4.11 the coupling values used to order the features by their similarity

across the two domains. From this Figure, we can see that our algorithm allows to identify the

three most shifted features that lead to a signi�cant performance drop observed previously.

4.6 Conclusions and perspectives

In this chapter, we presented a new feature selection method for domain adaptation based on

optimal transport. Building upon a recent theoretical work on optimal transport in domain

adaptation, we proposed a feature selection method that transports the empirical distribution

of features in the source domain to that of the target one in order to obtain a coupling matrix

representing their joint distribution. This coupling matrix is further used to identify the subset

of features that remain unshifted across the two domains. We evaluated our method on both

benchmark and real-world datasets and showed its e�ciency in identifying the subset of features

that successfully reduces the discrepancy between the two domains. Furthermore, we illustrated

the usefulness of our method in reducing the computational time of several state-of-the-art

methods that converge faster when taking as input a reduced set of features returned by our

algorithm.

The possible future investigations that may follow up the presented work are many. First

of all, we would like to combine our feature selection algorithm with a feature-transformation

domain adaptation algorithm in a way such that the projection of data and the selection of

features would be performed simultaneously. The potential interest of this joint approach

would be to reduce the computational complexity of the adaptation methods and to improve

their performance while maintaining the ease of interpretability of the obtained results. On the

other hand, it would be also very interesting to extend the proposed framework to the general

transfer learning scenario where the source and target tasks are not necessarily the same. In

this case, the feature selection algorithm would have to take into account the discriminative

power of each source feature in the target domain. Solving this problem in an unsupervised

setting is a very challenging task that would require an e�cient feature expressiveness measure

to be introduced. We believe that this future perspective would be of a great interest in many

real-world applications, notably the health-care one, where the manual labeling of the produced

MRI scans represents an important bottleneck due to its highly time-consuming nature.

102

Conclusion and Perspectives

In this thesis, we tackled the problem of learning a suitable representation of the data in

the speci�c context where the supervision on the data of interest is limited. We considered

this setting in di�erent possible scenarios (i) in Chapter 2, the training set is composed of a

small number of positive labeled examples that often happens, e.g., in anomaly detection tasks.

To address this problem, we introduce a theoretically well rooted metric learning algorithm

speci�cally dedicated to deal with highly imbalanced datasets (ii) in Chapter 3, we assume that

the whole training set is composed of a limited number of labeled examples, preventing the use of

deep neural network-based approaches. We tackle this problem by learning iteratively through

boosting and kernel random Fourier features a model and a representation that capture complex

decision boundaries and generalizes well with few examples and (iii) in Chapter 4, the source set

is made of labeled examples but the target domain on which the model will be deployed does not

provide labeled examples. We cope with this di�cult setting by learning a joint representation

between the source and target domains through the lens of a feature selection algorithm that

optimizes an optimal transport problem to �nd the most similar features between the two

domains. In each of these scenarios, we proposed an original contribution and showed how a

good representation of the data can help to create classi�cation models more suited than with

the original representation of the data. Our contributions are mainly algorithmic, but each of

them takes strong root in a theoretical analysis.

A common perspective to the di�erent contributions lies in the scalability of the algorithms

with respect to the number of training instances. This is especially true for the contributions

in Chapters 2 and 4 that both rely on pairwise distance matrices between two potentially large

sets of examples. In the metric learning part, the distance matrices are computed to ensure

that all constraints are satis�ed by the learned metric. A promising perspective would consist

in incorporating the ideas of neural network methods and perform a batch optimization: at

each iteration, only the constraints on a small set of examples would be checked, instead of all

the examples as done at the moment. Even if the contribution random Fourier features-based

algorithm presented in Chapter 3 is relatively fast compared to the state-of-the-art competitors,

a batch optimization could also makes the computation much faster by computing the residuals

for a reduced number of examples.

In our optimal transport-based feature selection, (4), a discrete transport map is computed

between two sets of examples and provides the transport plan between any two points of the

103

Conclusion and perspectives

sets. Instead, a possibility could be to rely on optimal transport implementations that learn a

continuous transport function, that could eventually also be learned using batch optimization.

A second perspective in line with what is done in Chapter 3 would be to provide a kernelized

version of our metric learning algorithm IML. The use of random Fourier features seems appro-

priate here as like most metric learning algorithms, this method allows to produce a mapping

of the point in a di�erent representation space. A possibility in the setting of metric learning

would consist in learning a linear weighted combinations of the random features to implicitly

induce non linearities.

104

List of Figures

1.1 Illustration of a toy dataset . 11

1.2 Illustration of the surrogates of the zero-one loss 13

1.3 Illustration of the cross-validation process . 15

1.4 Decision rule for the k-Nearest Neighbor algorithm 18

1.5 Decision boundary for the k-Nearest Neighbor algorithm 19

1.6 SVM model for di�erent values of the parameter C 20

1.7 SVM model for a linear and an RBF kernel . 21

1.8 Decision tree for di�erent depths . 28

1.9 Boosting models for di�erent iterations . 29

1.10 Computation of the optimal transport on a toy example 29

2.1 Behavior of classic metric learning algorithms when facing an increasing imbal-

ance on the spectfheart dataset . 33

2.2 Explanation of our metric learning loss function 36

2.3 Description of the two strategies that our algorithm resorts to deal with the

imbalance . 38

2.4 Behavior of our metric learning algorithm when facing an increasing imbalance

on the spectfheart dataset . 54

2.5 Behavior of all metric learning algorithms when facing an increasing imbalance

averaged over all datasets . 54

2.6 Behavior of our strategies on our metric learning algorithm when facing an in-

creasing imbalance averaged over all datasets 55

2.7 Behavior of our strategies on an existing metric learning algorithm when facing

an increasing imbalance averaged over all datasets 56

3.1 In�uence on the predictions of loss used in our proposed method 66

3.2 Display loss and decision boundary of our method 70

3.3 Accuracy and computation time for PBRFF, GBRFF0.5 and GBRFF1 . . . 72

3.4 Accuracy and computation time forGBRFF1 using di�erent numbers of random

features . 73

105

List of Figures

3.5 Accuracy divided by computation time for GBRFF1 using di�erent numbers of

random features . 74

3.6 Mean accuracy over the datasets as for GBRFF1 a function of the amount of

random features . 75

3.7 Accuracy and computation time for GBRFF1, GBRFF1.5 and GBRFF2 . . 75

3.8 Mean accuracy over the datasets . 76

3.9 Computation time of the di�erent methods . 77

3.10 Comparison of our method with LGBM on a toy example 79

4.1 Comparison of the three variants of optimal transport on a 2D toy example . . 85

4.2 Illustration of our example selection based on optimal transport 88

4.3 Illustration of our feature ranking for domain adaptation 90

4.4 Examples of images from the 10 classes in the four domains of the O�ce/Caltech

dataset. 91

4.5 Mean accuracies over the DA pairs without using adaptation in function of the

number of selected features . 93

4.6 Mean accuracies over the DA pairs using adaptation as a function of the number

of features selected . 94

4.7 Toy 2D example comparing example selection strategies 97

4.8 Examples of images for the 10 digit classes in the MNIST and USPS datasets. . 98

4.9 Mean accuracies over the domain adaptation pairs on the digit recognition and

amazon review datasets. 99

4.10 Example of distribution of 2 features illustrating the shift between the source

and target domains. 100

4.11 Performance and similarities of our method on a clinical MRI dataset 101

106

List of Tables

1.1 Confusion matrix in binary classi�cation tasks 12

2.1 Description of the datasets considered to compare metric learning methods . . . 49

2.2 Average F1-measure using di�erent metric learning algorithms 51

2.3 Average F1-measure using di�erent metric learning algorithms after a SMOTE

pre-processing . 52

2.4 Average F1-measure using di�erent metric learning algorithms after a Random

Under Sampling pre-processing . 53

3.1 Description of the datasets used to compare the methods 71

3.2 Mean accuracy over the datasets . 78

4.1 Recognition accuracies with no adaptation for SURF, Ca�etNet and GoogleNet

features . 92

4.2 Mean accuracies over the DA pairs without applying adaptation using 3 di�erent

types of features: SURF, Ca�eNet and GoogleNet 93

4.3 Recognition accuracies with adaptation for SURF, Ca�etNet and GoogleNet fea-

tures . 94

4.4 Recognition accuracies and computation time of di�erent adaptation algorithms

as a function of the numbers of selected features 95

4.5 Mean accuracies over the DA pairs without adaptation using di�erent example

selection methods . 96

4.6 Accuracies for the digit recognition benchmark and the Amazon review benchmark 99

4.7 Distribution of the MRI voxels between the Cancer and Non Cancer classes in

the source and target domains. 100

107

108

List of Algorithms

3.1 Gradient boosting [Friedman, 2001] . 64

3.2 GBRFF1 . 65

3.3 GBRFF2 . 68

4.1 Example selection in target domain . 89

4.2 Feature ranking for domain adaptation . 89

109

110

Bibliography

Charu C. Aggarwal. Outlier Analysis. Springer, 2013. (Cited on pages 34 and 51.)

Raj Agrawal, Trevor Campbell, Jonathan Huggins, and Tamara Broderick. Data-dependent

compression of random features for large-scale kernel approximation. In the 22nd Interna-

tional Conference on Arti�cial Intelligence and Statistics (AISTATS), pages 1822�1831, 2019.

(Cited on pages 26, 60, and 67.)

Rahaf Aljundi, Jérôme Lehaire, Fabrice Prost-Boucle, Olivier Rouvière, and Carole Lartizien.

Transfer learning for prostate cancer mapping based on multicentric MR imaging databases.

In Medical learning meets medical imaging workshop, pages 74�82. Springer, 2015. (Cited on

page 100.)

Maria-Florina Balcan, Avrim Blum, and Nathan Srebro. Improved guarantees for learning

via similarity functions. In the 21st Annual Conference on Learning Theory (COLT), pages

287�298, 2008. (Cited on page 60.)

Peter L. Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds

and structural results. Journal of Machine Learning Research (JMLR), 3(Nov):463�482, 2002.

(Cited on page 15.)

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In

European conference on computer vision (ECCV), pages 404�417. Springer, 2006. (Cited on

pages 1 and 91.)

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric learning, volume 9. Morgan &

Claypool Publishers, 2015. (Cited on pages 2, 3, 9, 19, 24, 32, 35, 39, 40, 41, 45, 46, 47,

and 48.)

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of repre-

sentations for domain adaptation. In Advances in neural information processing systems

(NeurIPS), pages 137�144, 2007. (Cited on pages 2 and 82.)

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-

nifer Wortman Vaughan. A theory of learning from di�erent domains. Machine learning,

79(1-2):151�175, 2010. (Cited on page 82.)

111

Bibliography

Christopher M. Bishop. Pattern recognition and machine learning. Springer, 2006. (Cited on

page 9.)

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for

optimal margin classi�ers. In Proceedings of the �fth annual workshop on Computational

learning theory, pages 144�152, 1992. (Cited on page 19.)

Olivier Bousquet and André Elissee�. Stability and generalization. Journal of machine learning

research (JMLR), 2(Mar):499�526, 2002. (Cited on pages 3, 15, 16, 34, 39, 40, 41, and 46.)

Paula Branco, Luís Torgo, and Rita P. Ribeiro. A survey of predictive modeling on imbalanced

domains. ACM Computing Surveys (CSUR), 49(2):1�50, 2016. (Cited on page 34.)

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classi�cation and

regression trees. CRC press, 1984. (Cited on page 22.)

Qiong Cao, Zheng-Chu Guo, and Yiming Ying. Generalization bounds for metric and similarity

learning. Machine Learning, 102(1):115�132, 2016. (Cited on page 35.)

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM

computing surveys (CSUR), 41(3):1�58, 2009. (Cited on pages 34 and 35.)

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.

ACM transactions on intelligent systems and technology (TIST), 2(3):1�27, 2011. (Cited

on page 21.)

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and Philip W. Kegelmeyer. SMOTE:

synthetic minority over-sampling technique. Journal of arti�cial intelligence research, 16:

321�357, 2002. (Cited on pages 34, 51, and 52.)

Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer. SMOTE-

Boost: Improving prediction of the minority class in boosting. In European conference on

principles of data mining and knowledge discovery, pages 107�119. Springer, 2003. (Cited on

page 34.)

Corinna Cortes and Vladimir N. Vapnik. Support-vector networks. Machine learning, 20(3):

273�297, 1995. (Cited on page 19.)

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain adaptation with regularized optimal

transport. In European Conference on Machine Learning & Principles and Practice of Knowl-

edge Discovery in Databases (ECML-PKDD), pages 274�289. Springer, 2014. (Cited on pages

84, 85, 92, and 95.)

Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for

domain adaptation. IEEE Transactions on Pattern Analysis & Machine Intelligence, pages

1853�1865, 2017. (Cited on page 91.)

112

Bibliography

Thomas Cover and Peter Hart. Nearest neighbor pattern classi�cation. IEEE transactions on

information theory, 13(1):21�27, 1967. (Cited on page 18.)

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Ad-

vances in neural information processing systems (NeurIPS), pages 2292�2300, 2013. (Cited

on page 27.)

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. Information-

theoretic metric learning. In Proceedings of the 24th international conference on Machine

learning (ICML), pages 209�216, 2007. (Cited on pages 25, 32, 37, and 50.)

Georgios Douzas and Fernando Bacao. E�ective data generation for imbalanced learning using

conditional generative adversarial networks. Expert Systems with applications, 91:464�471,

2018. (Cited on page 34.)

Petros Drineas and Michael W. Mahoney. On the nyström method for approximating a gram ma-

trix for improved kernel-based learning. The Journal of Machine Learning Research (JMLR),

6:2153�2175, 2005. (Cited on page 60.)

Chris Drummond and Robert C. Holte. C4. 5, class imbalance, and cost sensitivity: why

under-sampling beats over-sampling. In Workshop on learning from imbalanced datasets II,

volume 11, pages 1�8. Citeseer, 2003. (Cited on page 34.)

Sahibsingh A. Dudani. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on

Systems, Man, and Cybernetics, pages 325�327, 1976. (Cited on page 19.)

Charles Elkan. The foundations of cost-sensitive learning. In International joint conference

on arti�cial intelligence (IJCAI), pages 973�978. Lawrence Erlbaum Associates Ltd, 2001.

(Cited on page 34.)

Andrew Estabrooks, Taeho Jo, and Nathalie Japkowicz. A multiple resampling method for

learning from imbalanced data sets. Computational intelligence, 20(1):18�36, 2004. (Cited

on page 34.)

Rong-En Fan, Pai-Hsuen Chen, and Chih-Jen Lin. Working set selection using second or-

der information for training support vector machines. Journal of machine learning research

(JMLR), 6(Dec):1889�1918, 2005. (Cited on pages 3 and 20.)

Lin Feng, Huibing Wang, Bo Jin, Haohao Li, Mingliang Xue, and Le Wang. Learning a distance

metric by balancing KL-divergence for imbalanced datasets. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 49(12):2384�2395, 2018. (Cited on page 34.)

Basura Fernando, Amaury Habrard, Marc Sebban, and Tinne Tuytelaars. Unsupervised vi-

sual domain adaptation using subspace alignment. In Proceedings of the IEEE international

conference on computer vision, pages 2960�2967, 2013. (Cited on page 95.)

113

Bibliography

Jordan Frery, Amaury Habrard, Marc Sebban, Olivier Caelen, and Liyun He-Guelton. E�cient

top rank optimization with gradient boosting for supervised anomaly detection. In Euro-

pean Conference on Machine Learning & Principles and Practice of Knowledge Discovery in

Databases (ECML-PKDD), pages 20�35. Springer, 2017. (Cited on page 34.)

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In Proceed-

ings of the 13th International Conference on Machine Learning (ICML), volume 96, pages

148�156. Citeseer, 1996. (Cited on page 13.)

Jerome H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of

statistics, pages 1189�1232, 2001. (Cited on pages 4, 13, 24, 29, 60, 63, 64, 65, and 109.)

Mikel Galar, Alberto Fernandez, Edurne Barrenechea, Humberto Bustince, and Francisco Her-

rera. A review on ensembles for the class imbalance problem: bagging-, boosting-, and

hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 42(4):463�484, 2011. (Cited on page 34.)

Léo Gautheron, Amaury Habrard, Emilie Morvant, and Marc Sebban. Apprentissage de

métrique pour la classi�cation supervisée de données déséquilibrées. In Conférence sur

l'Apprentissage automatique (CAp), 2018a. (Cited on pages 6 and 31.)

Léo Gautheron, Ievgen Redko, and Carole Lartizien. Feature selection for unsupervised domain

adaptation using optimal transport. In European Conference on Machine Learning & Prin-

ciples and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2018b. (Cited on

pages 5 and 81.)

Léo Gautheron, Pascal Germain, Amaury Habrard, Gaël Letarte, Emilie Morvant, Marc

Sebban, and Valentina Zantedeschi. Revisite des �random Fourier features� basée sur

l'apprentissage PAC-Bayésien via des points d'intérêts. In Conférence sur l'Apprentissage

automatique (CAp), 2019a. (Cited on pages 6 and 59.)

Léo Gautheron, Amaury Habrard, Emilie Morvant, and Marc Sebban. Metric learning from

imbalanced data. In IEEE International Conference on Tools with Arti�cial Intelligence

(ICTAI), 2019b. (Cited on pages 5 and 31.)

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban, and Valentina Zantedeschi. Apprentissage d'ensemble basé sur des points de repère

avec des caractéristiques de Fourier aléatoires et un renforcement du gradient. In Conférence

sur l'Apprentissage automatique (CAp), 2020a. (Cited on pages 5 and 59.)

Léo Gautheron, Pascal Germain, Amaury Habrard, Guillaume Metzler, Emilie Morvant, Marc

Sebban, and Valentina Zantedeschi. Landmark-based ensemble learning with random Fourier

features and gradient boosting. In European Conference on Machine Learning & Principles

and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2020b. (Cited on pages

5 and 59.)

114

Bibliography

Léo Gautheron, Emilie Morvant, Amaury Habrard, and Marc Sebban. Metric learning from

imbalanced data with generalization guarantees. Pattern Recognition Letters, 133:298�304,

2020c. (Cited on pages 5 and 31.)

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-Bayesian

learning of linear classi�ers. In Proceedings of the 26th Annual International Conference on

Machine Learning (ICML), pages 353�360, 2009. (Cited on pages 17 and 63.)

Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. PAC-Bayes and

domain adaptation. Neurocomputing, 379:379�397, 2020. (Cited on pages 91 and 98.)

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press, 2016. (Cited

on pages 2 and 23.)

Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recog-

nition: An unsupervised approach. In Proceedings of the 2011 International Conference on

Computer Vision (ICCV), pages 999�1006, 2011. (Cited on page 91.)

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander

Smola. A kernel two-sample test. Journal of Machine Learning Research (JMLR), 13(Mar):

723�773, 2012. (Cited on page 87.)

Isabelle Guyon and André Elissee�. An introduction to variable and feature selection. Journal

of machine learning research (JMLR), 3(Mar):1157�1182, 2003. (Cited on page 83.)

Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-SMOTE: a new over-sampling

method in imbalanced data sets learning. In International conference on intelligent computing,

pages 878�887. Springer, 2005. (Cited on page 34.)

Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE Transactions on

knowledge and data engineering, 21(9):1263�1284, 2009. (Cited on page 34.)

Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,

Sergio Guadarrama, and Trevor Darrell. Ca�e: Convolutional architecture for fast feature

embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages

675�678, 2014. (Cited on pages 91 and 92.)

Rong Jin, Shijun Wang, and Yang Zhou. Regularized distance metric learning: Theory and

algorithm. In Advances in neural information processing systems (NeurIPS), pages 862�870,

2009. (Cited on pages 35 and 39.)

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and

Tie-Yan Liu. Lightgbm: A highly e�cient gradient boosting decision tree. In Advances in

neural information processing systems (NeurIPS), pages 3146�3154, 2017. (Cited on pages

70 and 80.)

115

Bibliography

Philip A. Knight. The sinkhorn�knopp algorithm: convergence and applications. SIAM Journal

on Matrix Analysis and Applications, 30(1):261�275, 2008. (Cited on page 27.)

Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. Imagenet classi�cation with deep con-

volutional neural networks. In Advances in neural information processing systems (NeurIPS),

pages 1097�1105, 2012. (Cited on pages 23 and 92.)

Brian Kulis. Metric learning: A survey. Foundations and Trends in Machine Learning, 5(4):

287�364, 2013. (Cited on pages 2, 3, 9, 19, 24, 32, and 49.)

John Langford and John Shawe-Taylor. PAC-Bayes & margins. In Advances in neural infor-

mation processing systems (NeurIPS), pages 439�446, 2003. (Cited on page 17.)

Jung-Eun Lee, Rong Jin, and Anil K. Jain. Rank-based distance metric learning: An application

to image retrieval. In 2008 IEEE Conference on Computer Vision and Pattern Recognition,

pages 1�8. IEEE, 2008. (Cited on page 25.)

Guillaume Lemaître, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning. The Journal of

Machine Learning Research (JMLR), 18(1):559�563, 2017. (Cited on page 51.)

Gaël Letarte, Emilie Morvant, and Pascal Germain. Pseudo-bayesian learning with kernel

Fourier transform as prior. In The 22nd International Conference on Arti�cial Intelligence

and Statistics (AISTATS), pages 768�776, 2019. (Cited on pages 26, 60, 61, 62, 63, 66, 67,

69, 71, and 79.)

Jingjing Li, Jidong Zhao, and Ke Lu. Joint feature selection and structure preservation for

domain adaptation. In Proceedings of the Twenty-Fifth International Joint Conference on

Arti�cial Intelligence (IJCAI), pages 1697�1703, 2016. (Cited on pages 82 and 83.)

Kun Liu, Jiangrui Han, Haiyong Chen, Haowei Yan, and Peng Yang. Defect detection on EL

images based on deep feature optimized by metric learning for imbalanced data. In 2019 25th

International Conference on Automation and Computing, pages 1�5. IEEE, 2019. (Cited on

page 34.)

Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance

learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39

(2):539�550, 2008. (Cited on page 34.)

Victoria López, Alberto Fernández, Salvador García, Vasile Palade, and Francisco Herrera. An

insight into classi�cation with imbalanced data: Empirical results and current trends on using

data intrinsic characteristics. Information sciences, 250:113�141, 2013. (Cited on page 34.)

Jiwen Lu, Xiuzhuang Zhou, Yap-Pen Tan, Yuanyuan Shang, and Jie Zhou. Neighborhood

repulsed metric learning for kinship veri�cation. IEEE transactions on pattern analysis and

machine intelligence, 36(2):331�345, 2013. (Cited on pages 25 and 37.)

116

Bibliography

Prasanta Chandra Mahalanobis. On the generalized distance in statistics. In National Institute

of Science of India, 1936. (Cited on page 24.)

Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus Frean, et al. Functional gradient

techniques for combining hypotheses. In Advances in Neural Information Processing Systems

(NeurIPS), pages 221�246, 1999. (Cited on page 61.)

David A. McAllester. Some PAC-Bayesian theorems. Machine Learning, 37(3):355�363, 1999.

(Cited on pages 15, 16, and 17.)

Brian McFee and Gert R. Lanckriet. Metric learning to rank. In Proceedings of the 27th

International Conference on Machine Learning (ICML), pages 775�782, 2010. (Cited on

page 34.)

James Mercer. Functions of positive and negative type, and their connection the theory of

integral equations. Philosophical transactions of the royal society of London. Series A, con-

taining papers of a mathematical or physical character, 209(441-458):415�446, 1909. (Cited

on page 21.)

Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie

Royale des Sciences de Paris, 1781. (Cited on page 26.)

Emilie Niaf, Olivier Rouvière, Florence Mège-Lechevallier, Flavie Bratan, and Carole Lartizien.

Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric

MRI. Physics in Medicine & Biology, 57(12):3833�3851, 2012. (Cited on pages 91 and 100.)

Dino Oglic and Thomas Gärtner. Greedy feature construction. In Advances in neural informa-

tion processing systems (NeurIPS), pages 3945�3953, 2016. (Cited on pages 60 and 70.)

Sinno Jialin Pan, Ivor W. Tsang, James T. Kwok, and Qiang Yang. Domain adaptation via

transfer component analysis. IEEE Transactions on Neural Networks, 22(2):199�210, 2010.

(Cited on page 95.)

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,

Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake

Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and

Edouard Duchesnay. Scikit-learn: Machine learning in python. The Journal of Machine

Learning Research (JMLR), 12:2825�2830, 2011. (Cited on page 76.)

Claudio Persello and Lorenzo Bruzzone. Kernel-based domain-invariant feature selection in

hyperspectral images for transfer learning. IEEE transactions on geoscience and remote

sensing, 54(5):2615�2626, 2015. (Cited on pages 82 and 84.)

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Advances

in neural information processing systems (NeurIPS), pages 1177�1184, 2008. (Cited on pages

3, 9, 24, 25, 60, 62, 67, and 79.)

117

Bibliography

Ievgen Redko, Amaury Habrard, and Marc Sebban. Theoretical analysis of domain adaptation

with optimal transport. In European Conference on Machine Learning & Principles and

Practice of Knowledge Discovery in Databases (ECML-PKDD), pages 737�753. Springer,

2017. (Cited on page 86.)

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès Bennani. Advances

in Domain Adaptation Theory. Elsevier, 2019. (Cited on pages 2 and 82.)

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-

zation in the brain. Psychological review, 65(6):386, 1958. (Cited on page 22.)

Walter Rudin. Fourier analysis on groups, volume 121967. Wiley Online Library, 1962. (Cited

on page 25.)

Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to

new domains. In European conference on computer vision (ECCV), pages 213�226. Springer,

2010. (Cited on page 91.)

Robert E. Schapire. The strength of weak learnability. Machine learning, 5(2):197�227, 1990.

(Cited on page 23.)

Robert E. Schapire and Yoram Singer. Improved boosting algorithms using con�dence-rated

predictions. Machine learning, 37(3):297�336, 1999. (Cited on pages 3, 23, 24, and 29.)

Bernhard Schölkopf, Chris Burgest, and Vladimir N. Vapnik. Extracting support data for a

given task. In Proceedings, First International Conference on Knowledge Discovery & Data

Mining. AAAI Press, Menlo Park, CA, pages 252�257, 1995. (Cited on page 49.)

Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons.

In Advances in neural information processing systems (NeurIPS), pages 41�48, 2004. (Cited

on page 25.)

John Shawe-Taylor and Robert C. Williamson. A PAC analysis of a bayesian estimator. In

Proceedings of the tenth annual conference on Computational learning theory (COLT), pages

2�9, 1997. (Cited on page 17.)

Aman Sinha and John C. Duchi. Learning kernels with random features. In Advances in Neural

Information Processing Systems (NeurIPS), pages 1298�1306, 2016. (Cited on pages 26, 60,

and 67.)

Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation.

In Proceedings of the Thirtieth AAAI Conference on Arti�cial Intelligence, pages 2058�2065.

AAAI Press, 2016. (Cited on page 95.)

118

Bibliography

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convo-

lutions. In Proceedings of the IEEE conference on computer vision and pattern recognition

(CVPR), pages 1�9, 2015. (Cited on page 92.)

Michel Talagrand. Concentration of measure and isoperimetric inequalities in product spaces.

Publications Mathématiques de l'Institut des Hautes Etudes Scienti�ques, 81(1):73�205, 1995.

(Cited on page 86.)

Selen Uguroglu and Jaime Carbonell. Feature selection for transfer learning. In European Con-

ference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases

(ECML-PKDD), pages 430�442. Springer, 2011. (Cited on pages 82, 84, and 87.)

Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134�1142,

1984. (Cited on page 15.)

Cornelis J. Van Rijsbergen. Further experiments with hierarchic clustering in document re-

trieval. Information Storage and Retrieval, 10(1):1�14, 1974. (Cited on pages 11 and 34.)

Vladimir N. Vapnik. The nature of statistical learning theory. Springer, 1995. (Cited on pages

13 and 49.)

Vladimir N. Vapnik and Alexey Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. Theory of Probability & Its Applications, 16(2):

264�280, 1971. (Cited on pages 15, 17, and 40.)

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business

Media, 2008. (Cited on pages 3, 9, 24, and 26.)

Pascal Vincent and Yoshua Bengio. Kernel matching pursuit. Machine learning, 48(1-3):165�

187, 2002. (Cited on page 60.)

Robin Vogel, Aurélien Bellet, and Stéphan Clémençon. A probabilistic theory of supervised

similarity learning for pointwise ROC curve optimization. In International Conference on

Machine Learning (ICML), pages 5065�5074, 2018. (Cited on page 34.)

Nan Wang, Xibin Zhao, Yu Jiang, and Yue Gao. Iterative metric learning for imbalance data

classi�cation. In Proceedings of the 27th International Joint Conference on Arti�cial Intelli-

gence (IJCAI), pages 2805�2811, 2018. (Cited on pages 34 and 50.)

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning

for imbalanced data classi�cation. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), pages 5017�5026, 2019. (Cited on page 34.)

119

Bibliography

Kilian Q. Weinberger and Lawrence K. Saul. Fast solvers and e�cient implementations for

distance metric learning. In Proceedings of the 25th international conference on Machine

learning (ICML), pages 1160�1167, 2008. (Cited on pages 49 and 50.)

Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large margin nearest

neighbor classi�cation. Journal of Machine Learning Research (JMLR), 10(Feb):207�244,

2009. (Cited on pages 25, 32, 35, 37, and 50.)

Di Wu, Boyu Wang, Doina Precup, and Benoit Boulet. Boosting based multiple kernel learning

and transfer regression for electricity load forecasting. In European Conference on Machine

Learning & Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD),

pages 39�51. Springer, 2017. (Cited on pages 60, 61, and 70.)

Shiming Xiang, Feiping Nie, and Changshui Zhang. Learning a mahalanobis distance metric

for data clustering and classi�cation. Pattern recognition, 41(12):3600�3612, 2008. (Cited on

pages 25 and 37.)

Eric P. Xing, Michael I. Jordan, Stuart J. Russell, and Andrew Y. Ng. Distance metric learning

with application to clustering with side-information. In Advances in neural information

processing systems (NeurIPS), pages 521�528, 2003. (Cited on pages 25, 37, and 49.)

Zhong Yin, Yongxiong Wang, Li Liu, Wei Zhang, and Jianhua Zhang. Cross-subject EEG

feature selection for emotion recognition using transfer recursive feature elimination. Frontiers

in neurorobotics, 11:19, 2017. (Cited on pages 82 and 84.)

Pourya Zadeh, Reshad Hosseini, and Suvrit Sra. Geometric mean metric learning. In Interna-

tional conference on machine learning (ICML), pages 2464�2471, 2016. (Cited on pages 25,

32, 35, 37, 50, and 57.)

Bianca Zadrozny, John Langford, and Naoki Abe. Cost-sensitive learning by cost-proportionate

example weighting. In Third IEEE international conference on data mining (ICDM), pages

435�442. IEEE, 2003. (Cited on page 34.)

Wei-Shi Zheng, Shaogang Gong, and Tao Xiang. Person re-identi�cation by probabilistic relative

distance comparison. In Proceedings of the 2011 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 649�656, 2011. (Cited on page 25.)

Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-BFGS-B:

Fortran subroutines for large-scale bound-constrained optimization. ACM Transactions on

Mathematical Software, 23(4):550�560, 1997. (Cited on page 50.)

120

Abstract Machine learning consists in the study and design of algorithms that build models able to

handle non trivial tasks as well as or better than humans and hopefully at a lesser cost. These models

are typically trained from a dataset where each example describes an instance of the same task and

is represented by a set of characteristics and an expected outcome or label which we usually want to

predict. An element required for the success of any machine learning algorithm is related to the quality

of the set of characteristics describing the data, also referred as data representation or features. In

supervised learning, the more the features describing the examples are correlated with the label, the

more e�ective the model will be. There exist three main families of features: the �observable�, the

�handcrafted� and the �latent� features that are usually automatically learned from the training data.

The contributions of this thesis fall into the scope of this last category. More precisely, we are interested

in the speci�c setting of learning a discriminative representation when the number of data of interest is

limited. A lack of data of interest can be found in di�erent scenarios. First, we tackle the problem of

imbalanced learning with a class of interest composed of a few examples by learning a metric that induces

a new representation space where the learned models do not favor the majority examples. Second, we

propose to handle a scenario with few available examples by learning at the same time a relevant data

representation and a model that generalizes well through boosting models using kernels as base learners

approximated by random Fourier features. Finally, to address the domain adaptation scenario where the

target set contains no label while the source examples are acquired in di�erent conditions, we propose to

reduce the discrepancy between the two domains by keeping only the most similar features optimizing

the solution of an optimal transport problem between the two domains.

Résumé L'apprentissage automatique consiste en l'étude et la conception d'algorithmes qui constru-

isent des modèles capables de traiter des tâches non triviales aussi bien ou mieux que les humains et, si

possible, à un moindre coût. Ces modèles sont généralement entraînés à partir d'un ensemble de données

où chaque exemple décrit une instance de la même tâche et est représenté par un ensemble de carac-

téristiques et un résultat ou étiquette que nous voulons généralement prédire. Un élément nécessaire

au succès de tout algorithme d'apprentissage automatique est lié à la qualité de l'ensemble de carac-

téristiques décrivant les données, également appelé représentation des données. Dans l'apprentissage

supervisé, plus les caractéristiques décrivant les exemples sont corrélées avec l'étiquette, plus le modèle

sera e�cace. Il existe trois grandes familles de caractéristiques : les caractéristiques �observables�, les

caractéristiques �fabriquées à la main� et les caractéristiques �latentes� qui sont généralement apprises

automatiquement à partir des données d'entraînement. Les contributions de cette thèse s'inscrivent

dans le cadre de cette dernière catégorie. Plus précisément, nous nous intéressons au cadre spéci�que de

l'apprentissage d'une représentation discriminatoire lorsque le nombre de données d'intérêt est limité.

Un manque de données d'intérêt peut être constaté dans di�érents scénarios. Tout d'abord, nous abor-

dons le problème de l'apprentissage déséquilibré avec une classe d'intérêt composée de peu d'exemples

en apprenant une métrique qui induit un nouvel espace de représentation où les modèles appris ne

favorisent pas les exemples majoritaires. Deuxièmement, nous proposons de traiter un scénario avec

peu d'exemples disponibles en apprenant en même temps une représentation de données pertinente et

un modèle qui généralise bien en boostant des modèles basés sur des noyaux et des caractéristiques

de Fourier aléatoires. En�n, pour traiter le scénario d'adaptation de domaine où l'ensemble cible ne

contient pas d'étiquette alors que les exemples sources sont acquis dans des conditions di�érentes, nous

proposons de réduire l'écart entre les deux domaines en ne conservant que les caractéristiques les plus

similaires qui optimisent la solution d'un problème de transport optimal entre les deux domaines.

121

	Introduction
	List of Publications
	List of Notations
	Background
	Supervised learning
	Learning from labeled data
	Performance measures
	Loss functions
	Parameter tuning
	Generalization guarantees

	Classification algorithms
	k-Nearest Neighbor (kNN)
	Support Vector Machine (SVM)
	Decision tree
	Neural networks
	Boosting

	Methodological building blocks
	Metric learning
	Random Fourier features (RFF)
	Optimal transport

	Metric Learning from Imbalanced Data with Generalization Guarantees
	Introduction and related work
	Notations and setting
	IML: Imbalanced Metric Learning
	Generalization bound for IML
	Experiments
	Datasets
	Optimization details
	Experimental setup
	Analysis of the results

	Conclusion and perspectives

	Ensemble Learning with Random Fourier Features and Boosting
	Introduction
	Notations and related work
	Pseudo-bayesian kernel learning with RFF
	Gradient boosting random Fourier features
	Gradient boosting in a nutshell
	Gradient boosting with random Fourier features
	Refining GBRFF1

	Experimental evaluation
	Setting
	The importance of learning the landmarks in GBRFF1
	Improving the efficiency of GBRFF1
	From GBRFF1 to GBRFF2
	Influence of learning the landmarks
	Influence of the number of examples on the computation time
	Performance comparison between all methods
	GBRFF2 is able to learn complex decision boundaries that generalizes well on small datasets

	Conclusion and perspectives

	Representations Learning for Unsupervised Domain Adaptation
	Introduction
	Related work
	Preliminary knowledge
	Proposed approach
	Theoretical insight
	Problem setup
	Finding a shared feature representation
	Feature selection

	Experimental evaluation
	Experiments on visual domain adaptation data
	Experiments on digit recognition and textual product reviews
	Experiments on a medical imaging dataset

	Conclusions and perspectives

	Conclusion and perspectives
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Abstract

